代码改变世界

自增ID算法snowflake - C#版

2018-05-09 14:56  会飞的雪鹿  阅读(1462)  评论(0编辑  收藏  举报

急景流年,铜壶滴漏,时光缱绻如画,岁月如诗如歌。转载一篇博客来慰藉,易逝的韶华

使用UUID或者GUID产生的ID没有规则

Snowflake算法是Twitter的工程师为实现递增而不重复的ID实现的

概述 
分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的。有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成。而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移到Cassandra,因为Cassandra没有顺序ID生成机制,所以开发了这样一套全局唯一ID生成服务。 
该项目地址为:https://github.com/twitter/snowflake是用Scala实现的。 
python版详见开源项目https://github.com/erans/pysnowflake

结构 
snowflake的结构如下(每部分用-分开):

0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000

第一位为未使用,接下来的41位为毫秒级时间(41位的长度可以使用69年),然后是5位datacenterId和5位workerId(10位的长度最多支持部署1024个节点) ,最后12位是毫秒内的计数(12位的计数顺序号支持每个节点每毫秒产生4096个ID序号)

一共加起来刚好64位,为一个Long型。(转换成字符串长度为18)

snowflake生成的ID整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由datacenter和workerId作区分),并且效率较高。据说:snowflake每秒能够产生26万个ID。

从图上看除了第一位不可用之外其它三组均可浮动站位,据说前41位就可以支撑到2082年,10位的可支持1023台机器,最后12位序列号可以在1毫秒内产生4095个自增的ID。

在多线程中使用要加锁。

 

看懂代码前 先来点计算机常识:<<左移  假如1<<2  :1左移2位=1*2^2=4(这里^是多少次方的意思,和下面的不同,哈别混淆。)

                                                     ^异或 :true^true=false   false^false=false  true^false=true false^true=true  例子:  1001^0001=1000

  负数的二进制:

第一步:绝对值化为你需要多少位表示的二进制
第二步:各位取反,0变1,1变0
第三步:最后面加1 
例子:-1的二进制→      0001  取反→1110→最后面加1→1111

好了废话不多说 直接代码:

public class IdWorker
    {
        //机器ID
        private static long workerId;
        private static long twepoch = 687888001020L; //唯一时间,这是一个避免重复的随机量,自行设定不要大于当前时间戳
        private static long sequence = 0L;
        private static int workerIdBits = 4; //机器码字节数。4个字节用来保存机器码(定义为Long类型会出现,最大偏移64位,所以左移64位没有意义)
        public static long maxWorkerId = -1L ^ -1L << workerIdBits; //最大机器ID
        private static int sequenceBits = 10; //计数器字节数,10个字节用来保存计数码
        private static int workerIdShift = sequenceBits; //机器码数据左移位数,就是后面计数器占用的位数
        private static int timestampLeftShift = sequenceBits + workerIdBits; //时间戳左移动位数就是机器码和计数器总字节数
        public static long sequenceMask = -1L ^ -1L << sequenceBits; //一微秒内可以产生计数,如果达到该值则等到下一微秒在进行生成
        private long lastTimestamp = -1L;

        /// <summary>
        /// 机器码
        /// </summary>
        /// <param name="workerId"></param>
        public IdWorker(long workerId)
        {
            if (workerId > maxWorkerId || workerId < 0)
                throw new Exception(string.Format("worker Id can't be greater than {0} or less than 0 ", workerId));
            IdWorker.workerId = workerId;
        }

        public long nextId()
        {
            lock (this)
            {
                long timestamp = timeGen();
                if (this.lastTimestamp == timestamp)
                { //同一微秒中生成ID
                    IdWorker.sequence = (IdWorker.sequence + 1) & IdWorker.sequenceMask; //用&运算计算该微秒内产生的计数是否已经到达上限
                    if (IdWorker.sequence == 0)
                    {
                        //一微秒内产生的ID计数已达上限,等待下一微秒
                        timestamp = tillNextMillis(this.lastTimestamp);
                    }
                }
                else
                { //不同微秒生成ID
                    IdWorker.sequence = 0; //计数清0
                }
                if (timestamp < lastTimestamp)
                { //如果当前时间戳比上一次生成ID时时间戳还小,抛出异常,因为不能保证现在生成的ID之前没有生成过
                    throw new Exception(string.Format("Clock moved backwards.  Refusing to generate id for {0} milliseconds",
                        this.lastTimestamp - timestamp));
                }
                this.lastTimestamp = timestamp; //把当前时间戳保存为最后生成ID的时间戳
                long nextId = (timestamp - twepoch << timestampLeftShift) | IdWorker.workerId << IdWorker.workerIdShift | IdWorker.sequence;
                return nextId;
            }
        }

        /// <summary>
        /// 获取下一微秒时间戳
        /// </summary>
        /// <param name="lastTimestamp"></param>
        /// <returns></returns>
        private long tillNextMillis(long lastTimestamp)
        {
            long timestamp = timeGen();
            while (timestamp <= lastTimestamp)
            {
                timestamp = timeGen();
            }
            return timestamp;
        }

        /// <summary>
        /// 生成当前时间戳
        /// </summary>
        /// <returns></returns>
        private long timeGen()
        {
            return (long)(DateTime.UtcNow - new DateTime(1970, 1, 1, 0, 0, 0, DateTimeKind.Utc)).TotalMilliseconds;
        }

    }

调用:

       IdWorker idworker = new IdWorker(1);
            for (int i = 0; i < 1000; i++)
            {
                Console.WriteLine(idworker.nextId());
            }

 

 

其他算法:

方法一:UUID

UUID是通用唯一识别码 (Universally Unique Identifier),在其他语言中也叫GUID,可以生成一个长度32位的全局唯一识别码。

 

String uuid = UUID.randomUUID().toString()

 

结果示例:

 

046b6c7f-0b8a-43b9-b35d-6489e6daee91

 

 

为什么无序的UUID会导致入库性能变差呢?

 

这就涉及到 B+树索引的分裂

 

 

 

 

众所周知,关系型数据库的索引大都是B+树的结构,拿ID字段来举例,索引树的每一个节点都存储着若干个ID。

 

如果我们的ID按递增的顺序来插入,比如陆续插入8,9,10,新的ID都只会插入到最后一个节点当中。当最后一个节点满了,会裂变出新的节点。这样的插入是性能比较高的插入,因为这样节点的分裂次数最少,而且充分利用了每一个节点的空间。

 

 

 

 

但是,如果我们的插入完全无序,不但会导致一些中间节点产生分裂,也会白白创造出很多不饱和的节点,这样大大降低了数据库插入的性能。

 

 

方法二:数据库自增主键

 

假设名为table的表有如下结构:

 

id        feild

35        a

 

每一次生成ID的时候,访问数据库,执行下面的语句:

 

begin;

REPLACE INTO table ( feild )  VALUES ( 'a' );

SELECT LAST_INSERT_ID();

commit;


REPLACE INTO 的含义是插入一条记录,如果表中唯一索引的值遇到冲突,则替换老数据。

 

这样一来,每次都可以得到一个递增的ID。

 

为了提高性能,在分布式系统中可以用DB proxy请求不同的分库,每个分库设置不同的初始值,步长和分库数量相等:

 

 

 

 

 

 

 

这样一来,DB1生成的ID是1,4,7,10,13....,DB2生成的ID是2,5,8,11,14.....