集合框架系列(一)ArrayList源码分析
目录
1 概述
2 源码分析
2.1 构造方法
2.2 插入
2.3 删除
2.4 遍历
3 其他细节
3.1 快速失败机制
3.2 关于遍历时删除
1 概述
ArrayList
是一种变长的集合类,基于定长数组实现。ArrayList 允许空值和重复元素,当往 ArrayList 中添加的元素数量大于其底层数组容量时,其会通过扩容机制重新生成一个更大的数组。另外,由于 ArrayList 底层基于数组实现,所以其可以保证在 O(1)
复杂度下完成随机查找操作。其他方面,ArrayList 是非线程安全类,并发环境下,多个线程同时操作ArrayList,会引发不可预知的错误。
ArrayList 是大家最为常用的集合类,作为一个变长集合类,其核心是扩容机制。所以只要知道它是怎么扩容的,以及基本的操作是怎样实现就够了。本文后续内容也将围绕这些点展开叙述。
补充:RandomAccess接口
public interface RandomAccess { }
查看源码我们发现实际上 RandomAccess
接口中什么都没有定义。所以,在我看来 RandomAccess
接口不过是一个标识罢了。标识什么? 标识实现这个接口的类具有随机访问功能。
ArrayList
实现了 RandomAccess
接口, 而 LinkedList
没有实现。为什么呢?我觉得还是和底层数据结构有关!ArrayList
底层是数组,而 LinkedList
底层是链表。数组天然支持随机访问,时间复杂度为 O(1),所以称为快速随机访问。链表需要遍历到特定位置才能访问特定位置的元素,时间复杂度为 O(n),所以不支持快速随机访问。,ArrayList
实现了 RandomAccess
接口,就表明了他具有快速随机访问功能。 RandomAccess
接口只是标识,并不是说 ArrayList
实现 RandomAccess
接口才具有快速随机访问功能的!
下面再总结一下 list 的遍历方式选择:
- 实现了
RandomAccess
接口的list,优先选择普通 for 循环 ,其次 foreach, - 未实现
RandomAccess
接口的list,优先选择iterator遍历(foreach遍历底层也是通过iterator实现的),大size的数据,千万不要使用普通for循环
2 源码分析
2.1 构造方法
ArrayList 有三个构造方法,一个是无参,一个需传入初始容量值,一个根据集合列表构造。大家平时最常用的是无参构造方法,相关代码如下:
/** * 默认初始容量大小 */ private static final int DEFAULT_CAPACITY = 10; private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {}; /** *默认构造函数,使用初始容量10构造一个空列表(无参数构造) */ public ArrayList() { this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA; } /** * 带初始容量参数的构造函数。(用户自己指定容量) */ public ArrayList(int initialCapacity) { if (initialCapacity > 0) {//初始容量大于0 //创建initialCapacity大小的数组 this.elementData = new Object[initialCapacity]; } else if (initialCapacity == 0) {//初始容量等于0 //创建空数组 this.elementData = EMPTY_ELEMENTDATA; } else {//初始容量小于0,抛出异常 throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity); } } /** *构造包含指定collection元素的列表,这些元素利用该集合的迭代器按顺序返回 *如果指定的集合为null,throws NullPointerException。 */ public ArrayList(Collection<? extends E> c) { elementData = c.toArray(); if ((size = elementData.length) != 0) { // c.toArray might (incorrectly) not return Object[] (see 6260652) if (elementData.getClass() != Object[].class) elementData = Arrays.copyOf(elementData, size, Object[].class); } else { // replace with empty array. this.elementData = EMPTY_ELEMENTDATA; } }
上面的代码比较简单,两个构造方法做的事情并不复杂,目的都是初始化底层数组 elementData。区别在于无参构造方法会将 elementData 初始化一个空数组,插入元素时,扩容将会按默认值重新初始化数组(延迟加载)。而有参的构造方法则会将 elementData 初始化为参数值大小(>= 0)的数组。一般情况下,我们用默认的构造方法即可。倘若在可知道将会向 ArrayList 插入多少元素的情况下,应该使用有参构造方法。按需分配,避免浪费。
2.2 插入
对于数组(线性表)结构,插入操作分为两种情况。一种是在元素序列尾部插入,另一种是在元素序列其他位置插入。ArrayList 的源码里也体现了这两种插入情况,如下:
/** 在元素序列尾部插入 */ public boolean add(E e) { // 1. 检测是否需要扩容 ensureCapacityInternal(size + 1); // Increments modCount!! // 2. 将新元素插入序列尾部 elementData[size++] = e; return true; } /** 在元素序列 index 位置处插入 */ public void add(int index, E element) { rangeCheckForAdd(index); // 1. 检测是否需要扩容 ensureCapacityInternal(size + 1); // Increments modCount!! // 2. 将 index 及其之后的所有元素都向后移一位 System.arraycopy(elementData, index, elementData, index + 1, size - index); // 3. 将新元素插入至 index 处 elementData[index] = element; size++; }
对于在元素序列尾部插入,这种情况比较简单,只需两个步骤即可:(1)检测数组是否有足够的空间插入;(2)将新元素插入至序列尾部
如果是在元素序列指定位置(假设该位置合理)插入,则情况稍微复杂一点,需要三个步骤:
- 检测数组是否有足够的空间
- 将 index 及其之后的所有元素向后移一位
- 将新元素插入至 index 处
从上图可以看出,将新元素插入至序列指定位置,需要先将该位置及其之后的元素都向后移动一位,为新元素腾出位置。这个操作的时间复杂度为O(N)
,频繁移动元素可能会导致效率问题,特别是集合中元素数量较多时。在日常开发中,若非所需,我们应当尽量避免在大集合中调用第二个插入方法。
以上是 ArrayList 插入相关的分析,上面的分析以及配图均未体现扩容机制。那么下面就来简单分析一下 ArrayList 的扩容机制。对于变长数据结构,当结构中没有空余空间可供使用时,就需要进行扩容。在 ArrayList 中,当空间用完,其会按照原数组空间的1.5倍进行扩容。相关源码如下:
/** 计算最小容量 */ private static int calculateCapacity(Object[] elementData, int minCapacity) { if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) { return Math.max(DEFAULT_CAPACITY, minCapacity); } return minCapacity; } /** 扩容的入口方法 */ private void ensureCapacityInternal(int minCapacity) { ensureExplicitCapacity(calculateCapacity(elementData, minCapacity)); } private void ensureExplicitCapacity(int minCapacity) { modCount++; // overflow-conscious code if (minCapacity - elementData.length > 0) grow(minCapacity); } /** 扩容的核心方法 */ private void grow(int minCapacity) { // overflow-conscious code int oldCapacity = elementData.length; // newCapacity = oldCapacity + oldCapacity / 2 = oldCapacity * 1.5 int newCapacity = oldCapacity + (oldCapacity >> 1); if (newCapacity - minCapacity < 0) newCapacity = minCapacity; if (newCapacity - MAX_ARRAY_SIZE > 0) newCapacity = hugeCapacity(minCapacity); // 扩容 elementData = Arrays.copyOf(elementData, newCapacity); } private static int hugeCapacity(int minCapacity) { if (minCapacity < 0) // overflow throw new OutOfMemoryError(); // 如果最小容量超过 MAX_ARRAY_SIZE,则将数组容量扩容至 Integer.MAX_VALUE return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE; }
上面就是扩容的逻辑,代码虽多,但很多都是边界检查,这里就不详细分析了。
2.3 删除
不同于插入操作,ArrayList 没有无参删除方法。所以其只能删除指定位置的元素或删除指定元素,这样就无法避免移动元素(除非从元素序列的尾部删除)。相关代码如下:
/** 删除指定位置的元素 */ public E remove(int index) { rangeCheck(index); modCount++; // 返回被删除的元素值 E oldValue = elementData(index); int numMoved = size - index - 1; if (numMoved > 0) // 将 index + 1 及之后的元素向前移动一位,覆盖被删除值 System.arraycopy(elementData, index+1, elementData, index, numMoved); // 将最后一个元素置空,并将 size 值减1 elementData[--size] = null; // clear to let GC do its work return oldValue; } E elementData(int index) { return (E) elementData[index]; } /** 删除指定元素,若元素重复,则只删除下标最小的元素 */ public boolean remove(Object o) { if (o == null) { for (int index = 0; index < size; index++) if (elementData[index] == null) { fastRemove(index); return true; } } else { // 遍历数组,查找要删除元素的位置 for (int index = 0; index < size; index++) if (o.equals(elementData[index])) { fastRemove(index); return true; } } return false; } /** 快速删除,不做边界检查,也不返回删除的元素值 */ private void fastRemove(int index) { modCount++; int numMoved = size - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--size] = null; // clear to let GC do its work }
上面的删除方法并不复杂,这里以第一个删除方法为例,删除一个元素步骤如下:
- 获取指定位置 index 处的元素值
- 将 index + 1 及之后的元素向前移动一位
- 将最后一个元素置空,并将 size 值减 1
- 返回被删除值,完成删除操作
现在,考虑这样一种情况。我们往 ArrayList 插入大量元素后,又删除很多元素,此时底层数组会空闲处大量的空间。因为 ArrayList 没有自动缩容机制,导致底层数组大量的空闲空间不能被释放,造成浪费。对于这种情况,ArrayList 也提供了相应的处理方法,如下:
/** 将数组容量缩小至元素数量 */ public void trimToSize() { modCount++; if (size < elementData.length) { elementData = (size == 0) ? EMPTY_ELEMENTDATA : Arrays.copyOf(elementData, size); } }
2.4 遍历
ArrayList支持两种查找方法,根据索引查找、判断是否包含元素。
根据索引查找
E elementData(int index) { //这个方法没有检查范围,因为在其他方法调用前已经检查过了 return (E) elementData[index]; } public E get(int index) { rangeCheck(index); //检查索引范围 return elementData(index); }
判断是否包含元素
//判断集合中是否包含元素 public boolean contains(Object o) { return indexOf(o) >= 0; } //获取元素对应的索引,当有重复元素时返回的是第一个相同的元素 public int indexOf(Object o) { if (o == null) { for (int i = 0; i < size; i++) if (elementData[i]==null) return i; } else { for (int i = 0; i < size; i++) if (o.equals(elementData[i])) return i; } return -1; }
ArrayList 实现了 RandomAccess 接口(该接口是个标志性接口),表明它具有随机访问的能力。ArrayList 底层基于数组实现,所以它可在常数阶的时间内完成随机访问,效率很高。对 ArrayList 进行遍历时,一般情况下,我们喜欢使用 foreach 循环遍历,但这并不是推荐的遍历方式。ArrayList 具有随机访问的能力,如果在一些效率要求比较高的场景下,更推荐下面这种方式:
for (int i = 0; i < list.size(); i++) { list.get(i); }
至于原因也不难理解,foreach 最终会被转换成迭代器遍历的形式,效率不如上面的遍历方式。
3.其他细节
3.1 快速失败机制
在 Java 集合框架中,很多类都实现了快速失败机制。该机制被触发时,会抛出并发修改异常ConcurrentModificationException
,这个异常大家在平时开发中多多少少应该都碰到过。关于快速失败机制,ArrayList 的注释里对此做了解释:ArrayList 迭代器中的方法都是均具有快速失败的特性,当遇到并发修改的情况时,迭代器会快速失败,以避免程序在将来不确定的时间里出现不确定的行为。
3.2 关于遍历时删除
遍历时删除是一个不正确的操作,即使有时候代码不出现异常,但执行逻辑也会出现问题。关于这个问题,阿里巴巴 Java 开发手册里也有所提及。这里引用一下:
【强制】不要在 foreach 循环里进行元素的 remove/add 操作。remove 元素请使用 Iterator 方式,如果并发操作,需要对 Iterator 对象加锁。
相关代码(稍作修改)如下:
List<String> a = new ArrayList<String>(); a.add("1"); a.add("2"); for (String temp : a) { System.out.println(temp); if("1".equals(temp)){ a.remove(temp); } } }
相信有些朋友应该看过这个,并且也执行过上面的程序。上面的程序执行起来不会虽不会出现异常,但代码执行逻辑上却有问题,只不过这个问题隐藏的比较深。我们把 temp 变量打印出来,会发现只打印了数字1
,2
没打印出来。初看这个执行结果确实很让人诧异,不明原因。如果死抠上面的代码,我们很难找出原因,此时需要稍微转换一下思路。我们都知道 Java 中的 foreach 是个语法糖,编译成字节码后会被转成用迭代器遍历的方式。所以我们可以把上面的代码转换一下,等价于下面形式:
List<String> a = new ArrayList<>(); a.add("1"); a.add("2"); Iterator<String> it = a.iterator(); while (it.hasNext()) { String temp = it.next(); System.out.println("temp: " + temp); if("1".equals(temp)){ a.remove(temp); } }
这个时候,我们再去分析一下 ArrayList 的迭代器源码就能找出原因。
private class Itr implements Iterator<E> { int cursor; // index of next element to return int lastRet = -1; // index of last element returned; -1 if no such int expectedModCount = modCount; public boolean hasNext() { return cursor != size; } @SuppressWarnings("unchecked") public E next() { // 并发修改检测,检测不通过则抛出异常 checkForComodification(); int i = cursor; if (i >= size) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (i >= elementData.length) throw new ConcurrentModificationException(); cursor = i + 1; return (E) elementData[lastRet = i]; } final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); } // 省略不相关的代码 }
我们一步一步执行一下上面的代码,第一次进入 while 循环时,一切正常,元素 1 也被删除了。但删除元素 1 后,就无法再进入 while 循环,此时 it.hasNext() 为 false。原因是删除元素 1 后,元素计数器 size = 1,而迭代器中的 cursor 也等于 1,从而导致 it.hasNext() 返回false。归根结底,上面的代码段没抛异常的原因是,循环提前结束,导致 next 方法没有机会抛异常。不信的话,大家可以把代码稍微修改一下,即可发现问题:
List<String> a = new ArrayList<>(); a.add("1"); a.add("2"); a.add("3"); Iterator<String> it = a.iterator(); while (it.hasNext()) { String temp = it.next(); System.out.println("temp: " + temp); if("1".equals(temp)){ a.remove(temp); } }
以上是关于遍历时删除的分析,在日常开发中,我们要避免上面的做法。正确的做法使用迭代器提供的删除方法,而不是直接删除
List<String> a = new ArrayList<String>(); a.add("1"); a.add("2"); a.add("3"); Iterator<String> it = a.iterator(); while (it.hasNext()) { String temp = it.next(); System.out.println("temp: " + temp); if("1".equals(temp)){ //使用迭代器的remove it.remove(); } }
0