【调制解调】FM 调频
说明
学习数字信号处理算法时整理的学习笔记。同系列文章目录可见 《DSP 学习之路》目录,代码已上传到 Github - ModulationAndDemodulation。本篇介绍 FM 调频信号的调制与解调,内附全套 MATLAB 代码。
- 说明
- 1. FM 调制算法
- 2. FM 解调算法
- 3. FM 仿真(MATLAB Communications Toolbox)
- 参考资料
- 附录代码
- 附.1 文件 mod_fm.m
- 附.2 文件 main_modFM_example1.m
- 附.3 文件 main_modFM_example2.m
- 附.4 文件 lpf_filter.m
- 附.5 文件 demod_fm_method1.m
- 附.6 文件 main_demodFM_example1.m
- 附.7 文件 demod_fm_method2.m
- 附.8 文件 main_demodFM_example2.m
- 附.9 文件 demod_fm_method3.m
- 附.10 文件 main_demodFM_example3.m
- 附.11 文件 demod_fm_method4.m
- 附.12 文件 main_demodFM_example4.m
- 附.13 文件 main_CommFM_example.m
1. FM 调制算法
1.1 FM 信号描述
用调制信号去控制载波的瞬时频率,使其按照调制信号的规律变化,当调制信号是模拟信号时,这个过程就被称为调频(FM)。FM 信号的时域表达式为:
式中:\(A\) 为载波恒定振幅,\(K_f\) 为调频灵敏度(单位 \(rad/(s{\cdot}V)\)),\(m(t)\) 是调制信号(携带要发出去的信息),\(cos{\omega_ct}\) 是载波,\(\omega_c\) 是载波角频率,与载波频率 \(f_c\) 之间的关系为 \(\omega_c=2{\pi}f_c\)。由式 \((1)\) 可得 FM 信号相对于载频 \({\omega_c}\) 的瞬时频偏为:
由 \((1)\) 式可知 FM 信号相对于载波相位 \({\omega}_ct\) 的瞬时相位偏移随 \(m(t)\) 的积分呈线性变化,由 \((2)\) 式可知 FM 信号相对于载频 \({\omega_c}\) 的瞬时频率偏移随 \(m(t)\) 成线性变化,比例系数都为 \(K_f\)。有时候会用 \(k_f\) 表示调频灵敏度(单位 \(Hz/V\)),它与 \(K_f\) 之间的关系为 \({K_f}=2{\pi}{k_f}\),需注意这个转换关系。FM 的调频指数(调制指数) \({\beta}\) 定义如下,其中 \(W\) 是基带信号(调制信号)\(m(t)\) 的带宽(或最高频率):
若 \(m(t)\) 为单一频率的正弦波(即 \(m(t)={A_m}cos({2{\pi}{f_m}t})\) 时,此时 \(W={f_m}\)),则调制指数的表达式如下,调制指数的值正好与最大相位偏移相同,其中 \({\Delta}f={\beta}{f_m}\) 表示最大频偏。
FM 信号的频域表达式比较复杂,下面分成窄带调频与宽带调频两种情况来简化讨论。
(1)窄带调频
一般将由 \(m(t)\) 引起的最大瞬时相位偏移远小于 \(30^{\circ}\) 的情况称为窄带 FM,即满足以下条件时,FM 信号的频谱宽度比较窄,称为窄带调频(NBFM)。窄带调频占据的带宽较窄,传输数据量有限,主要应用于无线语音的传输(比如无线对讲机)。
此时,式 \((1)\) 可以近似为:
对其做傅里叶变换,得到窄带调频(NBFM)信号的频谱(幅度谱)表达式:
式中,\(M(\omega)\) 是调制信号 \(m(t)\) 的频谱。与 AM 信号不同的是,NBFM 信号的两个边频分别乘了因式 \(1/(\omega-\omega_c)\) 和 \(1/(\omega+\omega_c)\),由于因式是频率的函数,所以这种加权是频率加权,加权的结果引起调制信号频谱的失真,此外, NBFM 的一个边带和 AM 反相。
(2)宽带调频
当不满足 \((5)\) 式所表示的条件时,FM 信号被称为宽带调频(WBFM)。宽带调频所占用的频带宽度比较宽,传输数据量大,主要应用于调频立体声广播。WBFM 的时域表达式无法进一步简化,首先考虑单音调制的情况,然后把分析的结论推广到多音调制,当 \(m(t)={A_m}cos({{\omega_m}t})\) 时,带入式 \((1)\) 展开可得:
式中 \(J_n(\beta)\) 为第一类 \(n\) 阶贝塞尔函数,它是调频指数 \(\beta\) 的函数。对其做傅里叶变换,得到单音调制时宽带调频(WBFM)信号的频谱(幅度谱)表达式:
由式 \((8)\) 和式 \((9)\) 可见,WBFM 调频信号的频谱由载波分量 \(\omega_c\) 和无数边频 \({\omega_c}\pm{n\omega_m}\) 组成。当 \(n=0\) 时是载波分量 \(\omega_c\),其幅度为 \(AJ_0(\beta)\),当 \(n\not=0\) 时就是对称分布在载频两侧的边频分量 \({\omega_c}\pm{n\omega_m}\),其幅度为 \(AJ_n(\beta)\),相邻边频之间的间隔为 \(\omega_m\)。且当 \(n\) 为奇数时,上下边频极性相反,当 \(n\) 为偶数时极性相同。由此可见,FM 信号的频谱不再是调制信号频谱的线性搬移,而是一种非线性过程。
1.2 FM 信号的带宽与功率分配
宽带调频信号的频谱包含无穷多个频率分量,因此理论上调频信号的频带宽度为无限宽。但是,实际上边频幅度 \(J_n(\beta)\) 随着 \(n\) 的增大而逐渐减小,因此只要取适当的 \(n\) 值使边频分量小到可以忽略的程度,调频信号可以近似认为具有有限频谱。通常采用的原则是:信号的频带宽度应包括幅度大于未调载波的 \(10\%\) 以上的边频分量,即 \(\lvert{J_n(\beta)}\rvert\geq0.1\)。根据经验,当 \(\beta\geq1\) 时,取边频数 \(n=\beta+1\) 即可,因为 \(n>\beta+1\) 以上的边频幅度 \(J_n(\beta)\) 均小于 \(0.1\),相应产生的功率均在总功率的 \(2\%\) 以下,可以忽略不计,根据这条经验规则,调频波的有效带宽为:
这就是广泛用于计算调频信号带宽的卡森(Carson)公式。式中 \(\beta\) 为调频指数,\(W\) 为基带信号(调制信号)\(m(t)\) 的带宽(或最高频率)。对于单音调制信号(即 \(m(t)={A_m}cos({2{\pi}{f_m}t})\) 时,此时 \(W={f_m}\)),将 \((4)\) 式带入 \((10)\) 式,可得:
- 当 \(\beta \ll 1\) 时(对应窄带调频),带宽可近似估计为 \(B_{NBFM}\approx2f_m\),这时,带宽由第一对边频分量决定,带宽只随调制频率 \(f_m\) 变化,而与最大频偏 \({\Delta}f\) 无关。
- 当 \(\beta \gg 1\) 时(对应宽带调频),带宽可近似估计为 \(B_{WBFM}\approx2{\Delta}f\),这时,带宽由最大频偏 \({\Delta}f\) 决定,而与调制频率 \(f_m\) 无关。
利用帕塞瓦尔定理以及贝塞尔函数性质,不难求得 FM 信号功率 \(P_{FM}\) 与未调载波功率 \(P_c\) 的关系如下:
上式说明,调频信号的平均功率 \(P_{FM}\) 等于未调载波的平均功率 \(P_c\),即调制后总的功率不变,只是将原来载波功率中的一部分分配给每个边频分量,所以,调制过程只是进行功率的重新分配,而分配的原则与调频指数 \(\beta\) 有关。
1.3 FM 信号的调制方法
FM 信号的调制方法有 3 种,一种是直接调频法,一种是间接调频法,第三种是正交调制法。
(1)直接调频法
直接调频法是用调制信号 \(m(t)\) 直接控制高频振荡器,让回路元件的参数发生改变,使其输出频率按调制信号的规律线性地变化,常用的元件是变容二极管。直接调频法的主要优点是在实现线性调频的要求下,可以获得较大的频偏,且实现电路简单;主要缺点是频率稳定度不高,往往需要采用自动频率控制系统来稳定中心频率。
(2)间接调频法
间接调频法也被称为倍频法、阿姆斯特朗法。该方法先将调制信号积分,然后对载波进行调相,即可产生一个 NBFM 信号,再经 \(n\) 次倍频器得到 WBFM 信号,间接调频法的优点是频率稳定性好,缺点是需要多次倍频和混频,电路较复杂。如下图所示,根据式 \((6)\) 窄带调频的时域表达式可知,虚线框内所示部分可以用来获得 NBFM 信号。
上图中的倍频器是一个非线性器件,以理想平方律器件为例,其输出 \(x_o(t)\) 与输入 \(x_i(t)\) 的关系为 \({x_o}(t)=a{x_i^2}(t)\),其中 \(a\) 为常数,将式 \((6)\) 带入,得到:
接着将 \(x_o(t)\) 经过一个带通滤波器,就可以将其中的直流分量滤除,从而得到一个新的 FM 信号 \(x'_o(t)\),如下:
这个信号的载频和相位偏移均增为原来的 \(2\) 倍,由于相位偏移增为 \(2\) 倍,因而调频指数也必然增为 \(2\) 倍,同理,经 \(n\) 次倍频后可以使调频信号的载频和调频指数增为 \(n\) 倍。增大调制指数时,一般需要保持载频不变或者不增大太多,这个时候可以接着使用一个混频器配一个带通滤波器来进行下变频,混频器只改变载频而不影响频偏,具体实现方法可参考《通信原理》相关资料。
(3)正交调制法
将 \((1)\) 式进行三角展开,可以得到:
正交调制流程如下:
- 对调制信号 \(m(t)\) 进行积分,得到 \(\Phi=K_f\int_0^{t}{m(\tau)}d{\tau}\)。
- 对积分后的信号分别取余弦和正弦,得到 \(I\) 路数据 \(I(t)=cos(\Phi)\) 与 \(Q\) 路数据 \(Q(t)=sin(\Phi)\)。
- 分别乘以载波 \(Acos(\omega_ct)\) 与 \(-Asin(\omega_ct)\) 后相加,得到 FM 信号 \(s_{FM}(t)=I(t)Acos(\omega_ct)-Q(t)Asin(\omega_ct)\)。
其中第三步也可以先将 \(I(t)\) 和 \(Q(t)\) 组成一个复信号 \(Z(t)=I(t)+iQ(t)\),然后乘以复载波 \(exp(i\omega_ct)\),最后取实部,即 \(s_{FM}(t)=Real\left[Z(t)exp(i\omega_ct)\right]\),两种方法是等价的。
1.4 窄带 FM 信号示例
上一小节中介绍的调制方法都与硬件实现相关,接下来使用 MATLAB 软件来直接生成 NBFM 信号。调制信号 \(m(t)\) 可以是确知信号,也可以是随机信号。当 \(m(t)\) 是确知信号时,不妨假设 \(m(t)\) 的时域表达式如下,对应的基带带宽 \(W=f_m\):
各调制参数取值:\(A=1\),\(f_m=2500Hz\),\({\beta}=10^{-6}\),\(f_c=20000Hz\)。信号采样率 \(f_s=8{f_c}\),仿真总时长为 \(2s\)。FM 调制效果如下图所示(为了美观,时域只显示前 500 个点),调制信号 \(m(t)\) 双边幅度谱有四根离散谱线(\({\pm}2500Hz\)、\({\pm}1250Hz\)),调制信号 \(m(t)\) 积分后的双边幅度谱有五根离散谱线(\(0Hz\)、\({\pm}2500Hz\)、\({\pm}1250Hz\)),NBFM 调频信号 \(s(t)\) 双边幅度谱有十根离散谱线(\({\pm}22500Hz\)、\({\pm}21250Hz\)、\({\pm}20000Hz\)、\({\pm}18750Hz\)、\({\pm}17500Hz\))。NBFM 调频信号 \(s(t)\) 的带宽满足公式 \(B_{NBFM}\approx2f_m=5000Hz\),代码详见附录 main_modFM_example1.m
与 mod_fm.m
,设置 beta = 1e-6
即可。
当 \(m(t)\) 是随机信号时,不妨假设基带信号带宽为 \(W={f_H}=3000Hz\),各调制参数取值:\(A=1\),\({\beta}=10^{-6}\),\(f_c=20000Hz\)。信号采样率 \(f_s=8{f_c}\),仿真总时长为 \(2s\)。FM 调制效果如下图所示(为了美观,时域只显示前 500 个点),调制信号 \(m(t)\) 双边幅度谱中间谱峰的范围约为 \(-3000Hz{\sim}3000Hz\),调制信号 \(m(t)\) 积分后的双边幅度谱中间谱峰的范围依然约为 \(-3000Hz{\sim}3000Hz\),NBFM 调频信号 \(s(t)\) 双边幅度谱有两根离散谱线(\({\pm}20000Hz\))及两个谱峰(范围约为 \(-23000Hz{\sim}-17000Hz\)、\(17000Hz{\sim}23000Hz\))。NBFM 调频信号 \(s(t)\) 的带宽满足公式 \(B_{NBFM}\approx2f_H=6000Hz\),代码详见附录 main_modFM_example2.m
与 mod_fm.m
,设置 beta = 1e-6
即可。
1.5 宽带 FM 信号示例
当 \(m(t)\) 是确知信号时,设 \(f_m=2500Hz\), \(\beta=4\),其他参数与 1.4 节中的确知信号相同,FM 调制效果如下图所示,带宽约为 \(B_{FM}=2(\beta+1)f_m=25000Hz\),代码详见附录 main_modFM_example1.m
与 mod_fm.m
,设置 fm = 2500, beta = 4
即可。
.当 \(m(t)\) 是确知信号时,设 \(f_m=1000Hz\), \(\beta=15\),其他参数与 1.4 节中的确知信号相同,FM 调制效果如下图所示,带宽约为 \(B_{WBFM}\approx2{\Delta}f=2{\beta}f_m=30000Hz\),代码详见附录 main_modFM_example1.m
与 mod_fm.m
,设置 fm = 1000, beta = 15
即可。
2. FM 解调算法
解调是调制的逆过程,其作用是从接收的已调信号中恢复原基带信号(即调制信号)。FM 解调的方法也分为相干解调和非相干解调,普通的相干解调仅适用于 NBFM 信号,正交相干解调与非相干解调对 NBFM 信号和 WBFM 信号均适用。下面分别用几种不同方法对 1.4 与 1.5 节中确知信号的 FM 调制结果进行解调。
2.1 非相干解调(鉴频器)
微分器和包络检波器是一种最常见的鉴频器。其中微分器的作用是把幅度恒定的调频波 \(s_{FM}(t)\) 变成幅度和频率都随调制信号 \(m(t)\) 变化的调幅调频波 \(s_d(t)\),即:
包络检波器则将其幅度变化检出并滤去直流,即得解调输出 \(m_o(t)={K_d}{K_f}m(t)\),式中 \(K_d\) 为鉴频器灵敏度(单位 \(V/(rad/s)\))。FM 非相干解调(鉴频器)一般有以下四个步骤,其中第一步是微分器,第二至第四步是包络检波器,与 AM 包络检波的流程一样。
- 第一步:求微分,得到 \(s_d(t)\)。
- 第二步:全波整流(对 \(s(t)\) 取绝对值)或半波整流(将 \(s(t)\) 小于 \(0\) 的地方置零)。
- 第三步:低通滤波器滤除高频载波,滤除 \(2{\omega}_c\) 或 \({\omega}_c\)。
- 第四步:去除直流分量(减去自身均值)。
对 1.4 节中的 FM 信号,设定 \(f_m=2500Hz\),\({\beta}=10^{-6}\),信噪比 \(SNR=150dB\),非相干解调效果如下,最大频偏 \({\Delta}f={\beta}f_m=0.0025Hz\) 过小,解调效果很差。
对 1.5 节中的 FM 信号,设定 \(f_m=2500Hz\),\({\beta}=4\),信噪比 \(SNR=50dB\),非相干解调效果如下,解调后幅度放大系数 \(k=\overline{{\lvert}m(t){\rvert}}/\overline{{\lvert}\hat{m}(t){\rvert}}\approx7.61\),使用这个系数放大解调信号幅值,然后计算误差,有:\(\sqrt{\sum{{\lvert}m(t_i)-k\hat{m}(t_i){\rvert}^2}}/\sqrt{\sum{{\lvert}m(t_i){\rvert}^2}}\approx0.0920\)。
对 1.5 节中的 FM 信号,设定 \(f_m=1000Hz\),\({\beta}=15\),信噪比 \(SNR=50dB\),非相干解调效果如下,解调后幅度放大系数 \(k=\overline{{\lvert}m(t){\rvert}}/\overline{{\lvert}\hat{m}(t){\rvert}}\approx5.07\),使用这个系数放大解调信号幅值,然后计算误差,有:\(\sqrt{\sum{{\lvert}m(t_i)-k\hat{m}(t_i){\rvert}^2}}/\sqrt{\sum{{\lvert}m(t_i){\rvert}^2}}\approx0.0634\)。
非相干解调(鉴频器)的代码详见 lpf_filter.m
、demod_fm_method1.m
和 main_demodFM_example1.m
。
2.2 非相干解调(鉴频器 - 希尔伯特变换法)
鉴频器中的包络检波器可以通过希尔伯特变换法来实现,解调时无需任何载频信息,这样,FM 非相干解调(鉴频器)可以分为以下三个步骤。
- 第一步:求微分,得到 \(s_d(t)\)。
- 第二步:计算 \(s_d(t)\) 的希尔伯特变换,得到一个复信号(实部为 \(s_d(t)\),虚部为其希尔伯特变换结果),对所得复信号取模,即为 \(s_d(t)\) 的包络。
- 第三步:去除直流分量(减去自身均值)。
对 1.4 节中的 FM 信号,设定 \(f_m=2500Hz\),\({\beta}=10^{-6}\),信噪比 \(SNR=150dB\),非相干解调效果如下,最大频偏 \({\Delta}f={\beta}f_m=0.0025Hz\) 过小,解调效果很差。
对 1.5 节中的 FM 信号,设定 \(f_m=2500Hz\),\({\beta}=4\),信噪比 \(SNR=50dB\),非相干解调效果如下,解调后幅度放大系数 \(k=\overline{{\lvert}m(t){\rvert}}/\overline{{\lvert}\hat{m}(t){\rvert}}\approx4.87\),使用这个系数放大解调信号幅值,然后计算误差,有:\(\sqrt{\sum{{\lvert}m(t_i)-k\hat{m}(t_i){\rvert}^2}}/\sqrt{\sum{{\lvert}m(t_i){\rvert}^2}}\approx0.0492\)。
对 1.5 节中的 FM 信号,设定 \(f_m=1000Hz\),\({\beta}=15\),信噪比 \(SNR=50dB\),非相干解调效果如下,解调后幅度放大系数 \(k=\overline{{\lvert}m(t){\rvert}}/\overline{{\lvert}\hat{m}(t){\rvert}}\approx3.26\),使用这个系数放大解调信号幅值,然后计算误差,有:\(\sqrt{\sum{{\lvert}m(t_i)-k\hat{m}(t_i){\rvert}^2}}/\sqrt{\sum{{\lvert}m(t_i){\rvert}^2}}\approx0.0433\)。
非相干解调(鉴频器 - 希尔伯特变换法)的代码详见 demod_fm_method2.m
和 main_demodFM_example2.m
。
2.3 相干解调
相干解调时,为了无失真地恢复原基带信号,接收端必须提供一个与调制载波严格同步(同频同相)的本地载波(称为相干载波,可使用锁相环技术得到)。普通的相干解调仅适用于 NBFM 信号,其解调框图如下:
其中:
相干载波 \(c(t)=-sin({\omega_c}t)\),则相乘器的输出为:
经低通滤波器取出其低频分量:
再经微分器,即得解调输出:
可见,相干解调可以恢复原调制信号,这种解调方法与线性调制中的相干解调一样,要求本地载波与调制载波同步,否则将使解调信号失真。NBFM 相干解调可以分为以下几步:
- 第一步:乘以相干载波(即乘以 \(-sin({\omega_c}t+\phi_0)\)),注意载波初始相位。
- 第二步:低通滤波滤除高频载波,滤除 \(2\omega_c\)。
- 第三步:求微分。
对 1.4 节中的 FM 信号,设定 \(f_m=2500Hz\),\({\beta}=10^{-6}\),信噪比 \(SNR=150dB\),相干解调效果如下,解调后幅度放大系数 \(k=\overline{{\lvert}m(t){\rvert}}/\overline{{\lvert}\hat{m}(t){\rvert}}\approx222.30\),使用这个系数放大解调信号幅值,然后计算误差,有:\(\sqrt{\sum{{\lvert}m(t_i)-k\hat{m}(t_i){\rvert}^2}}/\sqrt{\sum{{\lvert}m(t_i){\rvert}^2}}\approx0.1313\)。更改相干载波的初始相位为 \({\phi_0}=\pi/4,\pi/2\),或者更改相干载波的中心频率为 \(0.8f_c,1.2f_c\) 后,解调效果变差,说明这种方法对相干载波同频同相的要求较高,鲁棒性不够强悍,可使用锁相环技术来改善这一缺点。
对 1.5 节中的 FM 信号,设定 \(f_m=2500Hz\),\({\beta}=4\),信噪比 \(SNR=50dB\),相干解调效果如下,可知这种方法不适用于非窄带调频信号。
对 1.5 节中的 FM 信号,设定 \(f_m=1000Hz\),\({\beta}=15\),信噪比 \(SNR=50dB\),相干解调效果如下,可知这种方法不适用于非窄带调频信号。
相干解调的代码详见 lpf_filter.m
、demod_fm_method3.m
和 main_demodFM_example3.m
。
2.4 数字正交解调
数字正交解调也属于相干解调的一种,但这种方法具有较强的抗载频失配能力,不要求相干载波严格的同频同相。FM 数字正交解调一般有以下四个步骤:
- 第一步:乘以正交相干载波得到 \({s_I}(t)\) 与 \({s_Q}(t)\),即 \({s_I}(t)=s(t)cos({\omega_ct}+{\phi_0})\),\({s_Q}(t)=-s(t)sin({\omega_ct}+{\phi_0})\)。
- 第二步:低通滤波器滤除 \({s_I}(t)\) 与 \({s_Q}(t)\) 中的高频分量。
- 第三步:通过反正切计算相位 \(\Phi(t)=atan\left[\frac{s_Q(t)}{s_I(t)}\right]=k\int_0^{t}{m(\tau)}d{\tau}\)。
- 第四步:对相位进行差分,得到解调结果 \(m_o(t)\)。
反正切运算在硬件中难以实现,通过一阶近似,上面第三步与第四步可合并为以下式子:
对 1.4 节中的 FM 信号,设定 \(f_m=2500Hz\),\({\beta}=10^{-6}\),信噪比 \(SNR=150dB\),数字正交解调效果如下,解调后幅度放大系数 \(k=\overline{{\lvert}m(t){\rvert}}/\overline{{\lvert}\hat{m}(t){\rvert}}\approx17782852.62\),使用这个系数放大解调信号幅值,然后计算误差,有:\(\sqrt{\sum{{\lvert}m(t_i)-k\hat{m}(t_i){\rvert}^2}}/\sqrt{\sum{{\lvert}m(t_i){\rvert}^2}}\approx0.1318\)。
对 1.5 节中的 FM 信号,设定 \(f_m=2500Hz\),\({\beta}=4\),信噪比 \(SNR=50dB\),数字正交解调效果如下,解调后幅度放大系数 \(k=\overline{{\lvert}m(t){\rvert}}/\overline{{\lvert}\hat{m}(t){\rvert}}\approx4.48\),使用这个系数放大解调信号幅值,然后计算误差,有:\(\sqrt{\sum{{\lvert}m(t_i)-k\hat{m}(t_i){\rvert}^2}}/\sqrt{\sum{{\lvert}m(t_i){\rvert}^2}}\approx0.0391\)。
对 1.5 节中的 FM 信号,设定 \(f_m=1000Hz\),\({\beta}=15\),信噪比 \(SNR=50dB\),数字正交解调效果如下,解调后幅度放大系数 \(k=\overline{{\lvert}m(t){\rvert}}/\overline{{\lvert}\hat{m}(t){\rvert}}\approx2.99\),使用这个系数放大解调信号幅值,然后计算误差,有:\(\sqrt{\sum{{\lvert}m(t_i)-k\hat{m}(t_i){\rvert}^2}}/\sqrt{\sum{{\lvert}m(t_i){\rvert}^2}}\approx0.0163\)。
数字正交解调的代码详见 lpf_filter.m
、demod_fm_method4.m
和 main_demodFM_example4.m
。更改相干载波的初始相位为 \({\phi_0}=\pi/4,\pi/2\),或者更改相干载波的中心频率为 \(0.8f_c,1.2f_c\) 后,解调效果依然比较好,说明这种方法具有较好的抗载频失配能力。
3. FM 仿真(MATLAB Communications Toolbox)
MATLAB 的 Communications Toolbox 中提供了 FM 调制函数 fmmod,高斯白噪声函数 awgn,以及 FM 解调函数 fmdemod,可以很方便地完成 FM 信号仿真。使用这三个函数实现上面 1.4 节中确知信号 \(m(t)\) 的 FM 调制解调,调制后加噪声的效果如下:
解调效果如下:
解调信号与调制信号波形基本重回,计算误差,有:\(\sqrt{\sum{{\lvert}m(t_i)-\hat{m}(t_i){\rvert}^2}}/\sqrt{\sum{{\lvert}m(t_i){\rvert}^2}}\approx0.2397\)。代码详见附录 main_CommFM_example.m
。
参考资料
[1] 楼才义,徐建良,杨小牛.软件无线电原理与应用[M].电子工业出版社,2014.
[2] 樊昌信,曹丽娜.通信原理.第7版[M].国防工业出版社,2012.
[3] 刘学勇.详解MATLAB/Simulink通信系统建模与仿真[M].电子工业出版社,2011.
[4] 王丽娜,王兵.卫星通信系统.第2版[M].国防工业出版社,2014.
[5] 博客园 - 两种频率调制(FM)方法的MATLAB实现。
[6] CSDN - 数字信号处理基础----FM的调制与解调。
附录代码
附.1 文件 mod_fm.m
function [ sig_fm, deltaf ] = mod_fm(fc, beta, fs, mt, t, W, A)
% MOD_FM FM 调频
% 输入参数:
% fc 载波中心频率
% beta 调频指数/调制指数
% fs 信号采样率
% mt 调制信号
% t 采样时间
% W 基带信号带宽(最高频率)
% A 载波恒定振幅
% 输出参数:
% sig_fm 调频(FM)实信号
% deltaf 最大频偏
% @author 木三百川
% 计算调频灵敏度及最大频偏
kf = beta*W/max(abs(mt));
deltaf = beta*W;
% 计算调制信号积分
int_mt = cumtrapz(t,mt);
% 生成信号
sig_fm = A*cos(2*pi*fc*t+2*pi*kf*int_mt); % FM调频信号
% 绘图
nfft = length(sig_fm);
freq = (-nfft/2:nfft/2-1).'*(fs/nfft);
figure;set(gcf,'color','w');
plot_length = min(500, length(sig_fm));
subplot(3,2,1);
plot(t(1:plot_length), mt(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('调制信号m(t)');
subplot(3,2,2);
plot(freq, 10*log10(fftshift(abs(fft(mt,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('调制信号m(t)双边幅度谱');
subplot(3,2,3);
plot(t(1:plot_length), int_mt(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('调制信号m(t)积分');
subplot(3,2,4);
plot(freq, 10*log10(fftshift(abs(fft(int_mt,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('调制信号m(t)积分双边幅度谱');
subplot(3,2,5);
plot(t(1:plot_length), sig_fm(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('FM调频信号s(t)');
subplot(3,2,6);
plot(freq, 10*log10(fftshift(abs(fft(sig_fm,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('FM调频信号s(t)双边幅度谱');
end
附.2 文件 main_modFM_example1.m
clc;
clear;
close all;
% FM 调制仿真(调制信号为确知信号)
% @author 木三百川
% 调制参数
A = 1; % 载波恒定振幅
fm = 2500; % 调制信号参数
beta = 1e-6; % 调频指数/调制指数
fc = 20000; % 载波频率
fs = 8*fc; % 采样率
total_time = 2; % 仿真时长,单位:秒
% 采样时间
t = 0:1/fs:total_time-1/fs;
% 调制信号为确知信号
mt = sin(2*pi*fm*t)+cos(pi*fm*t);
W = fm;
% FM 调制
[ sig_fm, deltaf ] = mod_fm(fc, beta, fs, mt, t, W, A);
fprintf('最大频偏 deltaf = %.6f Hz.\n', deltaf);
附.3 文件 main_modFM_example2.m
clc;
clear;
close all;
% FM 调制仿真(调制信号为随机信号)
% @author 木三百川
% 调制参数
A = 1; % 载波恒定振幅
fH = 3000; % 基带信号带宽
beta = 1e-6; % 调频指数/调制指数
fc = 20000; % 载波频率
fs = 8*fc; % 采样率
total_time = 2; % 仿真时长,单位:秒
% 采样时间
t = 0:1/fs:total_time-1/fs;
% 调制信号为随机信号
mt = randn(size(t));
b = fir1(512, fH/(fs/2), 'low');
mt = filter(b,1,mt);
mt = mt - mean(mt);
W = fH;
% FM 调制
[ sig_fm, deltaf ] = mod_fm(fc, beta, fs, mt, t, W, A);
fprintf('最大频偏 deltaf = %.6f Hz.\n', deltaf);
附.4 文件 lpf_filter.m
function sig_lpf = lpf_filter(sig_data, cutfre)
% LPF_FILTER 自定义理想低通滤波器
% 输入参数:
% sig_data 待滤波数据
% cutfre 截止频率,范围 (0,1)
% 输出参数:
% sig_lpf 低通滤波结果
% @author 木三百川
nfft = length(sig_data);
lidx = round(nfft/2-cutfre*nfft/2);
ridx = nfft - lidx;
sig_fft_lpf = fftshift(fft(sig_data));
sig_fft_lpf([1:lidx,ridx:nfft]) = 0;
sig_lpf = real(ifft(fftshift(sig_fft_lpf)));
end
附.5 文件 demod_fm_method1.m
function [ sig_fm_demod ] = demod_fm_method1(sig_fm_receive, fc, fs, t)
% DEMOD_FM_METHOD1 FM 非相干解调(鉴频器)
% 输入参数:
% sig_fm_receive FM 接收信号,行向量
% fc 载波中心频率
% fs 信号采样率
% t 采样时间
% 输出参数:
% sig_fm_demod 解调结果,与 sig_fm_receive 等长
% @author 木三百川
% 第一步:求微分
sig_dfm = [diff(sig_fm_receive),0];
% 第二步:全波整流
sig_fm_abs = abs(sig_dfm);
% 第三步:低通滤波
sig_fm_lpf = lpf_filter(sig_fm_abs, fc/2/(fs/2));
% 第四步:去除直流分量
sig_fm_demod = sig_fm_lpf - mean(sig_fm_lpf);
% 绘图
nfft = length(sig_fm_abs);
freq = (-nfft/2:nfft/2-1).'*(fs/nfft);
figure;set(gcf,'color','w');
plot_length = min(500, length(sig_fm_abs));
subplot(3,2,1);
plot(t(1:plot_length), sig_fm_abs(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('全波整流结果');
subplot(3,2,2);
plot(freq, 10*log10(fftshift(abs(fft(sig_fm_abs,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('全波整流结果双边幅度谱');
subplot(3,2,3);
plot(t(1:plot_length), sig_fm_lpf(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('低通滤波结果');
subplot(3,2,4);
plot(freq, 10*log10(fftshift(abs(fft(sig_fm_lpf,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('低通滤波结果双边幅度谱');
subplot(3,2,5);
plot(t(1:plot_length), sig_fm_demod(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('(去除直流)解调结果');
subplot(3,2,6);
plot(freq, 10*log10(fftshift(abs(fft(sig_fm_demod,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('(去除直流)解调结果双边幅度谱');
end
附.6 文件 main_demodFM_example1.m
clc;
clear;
close all;
% FM 解调仿真(调制信号为确知信号,非相干解调)
% @author 木三百川
% 调制参数
A = 1; % 载波恒定振幅
fm = 1000; % 调制信号参数
beta = 15; % 调频指数/调制指数
fc = 20000; % 载波频率
fs = 8*fc; % 采样率
total_time = 2; % 仿真时长,单位:秒
% 采样时间
t = 0:1/fs:total_time-1/fs;
% 调制信号为确知信号
mt = sin(2*pi*fm*t)+cos(pi*fm*t);
W = fm;
% FM 调制
[ sig_fm_send, deltaf ] = mod_fm(fc, beta, fs, mt, t, W, A);
fprintf('最大频偏 deltaf = %.6f Hz.\n', deltaf);
% 加噪声
snr = 50; % 信噪比
sig_fm_receive = awgn(sig_fm_send, snr, 'measured');
% 非相干解调
[ sig_fm_demod ] = demod_fm_method1(sig_fm_receive, fc, fs, t);
% 绘图
nfft = length(sig_fm_receive);
freq = (-nfft/2:nfft/2-1).'*(fs/nfft);
figure;set(gcf,'color','w');
plot_length = min(500, length(sig_fm_receive));
subplot(1,2,1);
plot(t(1:plot_length), sig_fm_receive(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('FM接收信号');
subplot(1,2,2);
plot(freq, 10*log10(fftshift(abs(fft(sig_fm_receive,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('FM接收信号双边幅度谱');
coef = mean(abs(mt))/mean(abs(sig_fm_demod));
fprintf('norm(调制信号 - %.2f * 解调信号)/norm(调制信号) = %.4f.\n', coef, norm(mt-coef*sig_fm_demod)/norm(mt));
figure;set(gcf,'color','w');
plot(t(1:plot_length), mt(1:plot_length));xlim([t(1),t(plot_length)]);
hold on;
plot(t(1:plot_length), coef*sig_fm_demod(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('解调效果');
legend('调制信号','解调信号(放大后)');
附.7 文件 demod_fm_method2.m
function [ sig_fm_demod ] = demod_fm_method2(sig_fm_receive, fs, t)
% DEMOD_FM_METHOD2 FM 非相干解调(鉴频器 - 希尔伯特变换法)
% 输入参数:
% sig_fm_receive FM 接收信号,行向量
% fs 信号采样率
% t 采样时间
% 输出参数:
% sig_fm_demod 解调结果,与 sig_fm_receive 等长
% @author 木三百川
% 第一步:求微分
sig_dfm = [diff(sig_fm_receive),0];
% 第二步:计算信号包络
sig_fm_envelope = abs(hilbert(sig_dfm));
% 第三步:去除直流分量
sig_fm_demod = sig_fm_envelope - mean(sig_fm_envelope);
% 绘图
nfft = length(sig_fm_receive);
freq = (-nfft/2:nfft/2-1).'*(fs/nfft);
figure;set(gcf,'color','w');
plot_length = min(500, length(sig_fm_receive));
subplot(3,2,1);
plot(t(1:plot_length), sig_dfm(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('求微分结果');
subplot(3,2,2);
plot(freq, 10*log10(fftshift(abs(fft(sig_dfm,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('求微分结果双边幅度谱');
subplot(3,2,3);
plot(t(1:plot_length), sig_fm_envelope(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('计算信号包络结果');
subplot(3,2,4);
plot(freq, 10*log10(fftshift(abs(fft(sig_fm_envelope,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('计算信号包络结果双边幅度谱');
subplot(3,2,5);
plot(t(1:plot_length), sig_fm_demod(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('(去除直流)解调结果');
subplot(3,2,6);
plot(freq, 10*log10(fftshift(abs(fft(sig_fm_demod,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('(去除直流)解调结果双边幅度谱');
end
附.8 文件 main_demodFM_example2.m
clc;
clear;
close all;
% FM 解调仿真(调制信号为确知信号,非相干解调/希尔伯特变换法)
% @author 木三百川
% 调制参数
A = 1; % 载波恒定振幅
fm = 1000; % 调制信号参数
beta = 15; % 调频指数/调制指数
fc = 20000; % 载波频率
fs = 8*fc; % 采样率
total_time = 2; % 仿真时长,单位:秒
% 采样时间
t = 0:1/fs:total_time-1/fs;
% 调制信号为确知信号
mt = sin(2*pi*fm*t)+cos(pi*fm*t);
W = fm;
% FM 调制
[ sig_fm_send, deltaf ] = mod_fm(fc, beta, fs, mt, t, W, A);
fprintf('最大频偏 deltaf = %.6f Hz.\n', deltaf);
% 加噪声
snr = 50; % 信噪比
sig_fm_receive = awgn(sig_fm_send, snr, 'measured');
% 非相干解调
[ sig_fm_demod ] = demod_fm_method2(sig_fm_receive, fs, t);
% 绘图
nfft = length(sig_fm_receive);
freq = (-nfft/2:nfft/2-1).'*(fs/nfft);
figure;set(gcf,'color','w');
plot_length = min(500, length(sig_fm_receive));
subplot(1,2,1);
plot(t(1:plot_length), sig_fm_receive(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('FM接收信号');
subplot(1,2,2);
plot(freq, 10*log10(fftshift(abs(fft(sig_fm_receive,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('FM接收信号双边幅度谱');
coef = mean(abs(mt))/mean(abs(sig_fm_demod));
fprintf('norm(调制信号 - %.2f * 解调信号)/norm(调制信号) = %.4f.\n', coef, norm(mt-coef*sig_fm_demod)/norm(mt));
figure;set(gcf,'color','w');
plot(t(1:plot_length), mt(1:plot_length));xlim([t(1),t(plot_length)]);
hold on;
plot(t(1:plot_length), coef*sig_fm_demod(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('解调效果');
legend('调制信号','解调信号(放大后)');
附.9 文件 demod_fm_method3.m
function [ sig_fm_demod ] = demod_fm_method3(sig_fm_receive, fc, fs, t, phi0)
% DEMOD_FM_METHOD3 FM 相干解调
% 输入参数:
% sig_fm_receive FM 接收信号,行向量
% fc 载波中心频率
% fs 信号采样率
% t 采样时间
% phi0 相干载波初始相位
% 输出参数:
% sig_fm_demod 解调结果,与 sig_fm_receive 等长
% @author 木三百川
% 第一步:乘以相干载波
sig_fm_ct = -sig_fm_receive.*sin(2*pi*fc*t+phi0);
% 第二步:低通滤波
sig_fm_lpf = lpf_filter(sig_fm_ct, fc/(fs/2));
% 第三步:求微分
sig_fm_demod = [diff(sig_fm_lpf),0]*fs;
% 绘图
nfft = length(sig_fm_receive);
freq = (-nfft/2:nfft/2-1).'*(fs/nfft);
figure;set(gcf,'color','w');
plot_length = min(500, length(sig_fm_receive));
subplot(3,2,1);
plot(t(1:plot_length), sig_fm_ct(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('乘以相干载波结果');
subplot(3,2,2);
plot(freq, 10*log10(fftshift(abs(fft(sig_fm_ct,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('乘以相干载波结果双边幅度谱');
subplot(3,2,3);
plot(t(1:plot_length), sig_fm_lpf(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('低通滤波结果');
subplot(3,2,4);
plot(freq, 10*log10(fftshift(abs(fft(sig_fm_lpf,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('低通滤波结果双边幅度谱');
subplot(3,2,5);
plot(t(1:plot_length), sig_fm_demod(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('(求微分)解调结果');
subplot(3,2,6);
plot(freq, 10*log10(fftshift(abs(fft(sig_fm_demod,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('(求微分)解调结果双边幅度谱');
end
附.10 文件 main_demodFM_example3.m
clc;
clear;
close all;
% FM 解调仿真(调制信号为确知信号,相干解调)
% @author 木三百川
% 调制参数
A = 1; % 载波恒定振幅
fm = 2500; % 调制信号参数
beta = 1e-6; % 调频指数/调制指数
fc = 20000; % 载波频率
fs = 8*fc; % 采样率
total_time = 2; % 仿真时长,单位:秒
% 采样时间
t = 0:1/fs:total_time-1/fs;
% 调制信号为确知信号
mt = sin(2*pi*fm*t)+cos(pi*fm*t);
W = fm;
% FM 调制
[ sig_fm_send, deltaf ] = mod_fm(fc, beta, fs, mt, t, W, A);
fprintf('最大频偏 deltaf = %.6f Hz.\n', deltaf);
% 加噪声
snr = 150; % 信噪比
sig_fm_receive = awgn(sig_fm_send, snr, 'measured');
% 相干解调
ini_phase = 0;
[ sig_fm_demod ] = demod_fm_method3(sig_fm_receive, fc, fs, t, ini_phase);
% 绘图
nfft = length(sig_fm_receive);
freq = (-nfft/2:nfft/2-1).'*(fs/nfft);
figure;set(gcf,'color','w');
plot_length = min(500, length(sig_fm_receive));
subplot(1,2,1);
plot(t(1:plot_length), sig_fm_receive(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('FM接收信号');
subplot(1,2,2);
plot(freq, 10*log10(fftshift(abs(fft(sig_fm_receive,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('FM接收信号双边幅度谱');
coef = mean(abs(mt))/mean(abs(sig_fm_demod));
fprintf('norm(调制信号 - %.2f * 解调信号)/norm(调制信号) = %.4f.\n', coef, norm(mt-coef*sig_fm_demod)/norm(mt));
figure;set(gcf,'color','w');
plot(t(1:plot_length), mt(1:plot_length));xlim([t(1),t(plot_length)]);
hold on;
plot(t(1:plot_length), coef*sig_fm_demod(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('解调效果');
legend('调制信号','解调信号(放大后)');
附.11 文件 demod_fm_method4.m
function [ sig_fm_demod ] = demod_fm_method4(sig_fm_receive, fc, fs, t, phi0)
% DEMOD_FM_METHOD4 FM 数字正交解调/相干解调
% 输入参数:
% sig_fm_receive FM 接收信号,行向量
% fc 载波中心频率
% fs 信号采样率
% t 采样时间
% phi0 相干载波初始相位
% 输出参数:
% sig_fm_demod 解调结果,与 sig_fm_receive 等长
% @author 木三百川
% 第一步:乘以正交相干载波
sig_fm_i = sig_fm_receive.*cos(2*pi*fc*t+phi0);
sig_fm_q = -sig_fm_receive.*sin(2*pi*fc*t+phi0);
% 第二步:低通滤波
sig_fm_i_lpf = lpf_filter(sig_fm_i, fc/(fs/2));
sig_fm_q_lpf = lpf_filter(sig_fm_q, fc/(fs/2));
% 第三步:计算相位
Pt = unwrap(atan2(sig_fm_q_lpf, sig_fm_i_lpf));
% 第四步:计算差分
sig_fm_demod = [diff(Pt),0];
% % 合并第三步与第四步:反正切近似
% sig_fm_demod = (sig_fm_i_lpf(1:end-1).*sig_fm_q_lpf(2:end)-sig_fm_i_lpf(2:end).* ...
% sig_fm_q_lpf(1:end-1))./(sig_fm_i_lpf(2:end).^2+sig_fm_q_lpf(2:end).^2);
% sig_fm_demod = [sig_fm_demod, sig_fm_demod(end)];
% 绘图
nfft = length(sig_fm_receive);
freq = (-nfft/2:nfft/2-1).'*(fs/nfft);
figure;set(gcf,'color','w');
plot_length = min(500, length(sig_fm_receive));
subplot(2,2,1);
plot(t(1:plot_length), sig_fm_i(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('乘以正交相干载波 I 路结果');
subplot(2,2,2);
plot(freq, 10*log10(fftshift(abs(fft(sig_fm_i,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('乘以正交相干载波 I 路结果双边幅度谱');
subplot(2,2,3);
plot(t(1:plot_length), sig_fm_q(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('乘以正交相干载波 Q 路结果');
subplot(2,2,4);
plot(freq, 10*log10(fftshift(abs(fft(sig_fm_q,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('乘以正交相干载波 Q 路结果双边幅度谱');
figure;set(gcf,'color','w');
subplot(2,2,1);
plot(t(1:plot_length), sig_fm_i_lpf(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('低通滤波 I 路结果');
subplot(2,2,2);
plot(freq, 10*log10(fftshift(abs(fft(sig_fm_i_lpf,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('低通滤波 I 路结果双边幅度谱');
subplot(2,2,3);
plot(t(1:plot_length), sig_fm_q_lpf(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('低通滤波 Q 路结果');
subplot(2,2,4);
plot(freq, 10*log10(fftshift(abs(fft(sig_fm_q_lpf,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('低通滤波 Q 路结果双边幅度谱');
figure;set(gcf,'color','w');
subplot(2,2,1);
plot(t(1:plot_length), Pt(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('计算相位结果');
subplot(2,2,2);
plot(freq, 10*log10(fftshift(abs(fft(Pt,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('计算相位结果双边幅度谱');
subplot(2,2,3);
plot(t(1:plot_length), sig_fm_demod(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('(计算差分)解调结果');
subplot(2,2,4);
plot(freq, 10*log10(fftshift(abs(fft(sig_fm_demod,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('(计算差分)解调结果双边幅度谱');
end
附.12 文件 main_demodFM_example4.m
clc;
clear;
close all;
% FM 解调仿真(调制信号为确知信号,数字正交解调)
% @author 木三百川
% 调制参数
A = 1; % 载波恒定振幅
fm = 1000; % 调制信号参数
beta = 15; % 调频指数/调制指数
fc = 20000; % 载波频率
fs = 8*fc; % 采样率
total_time = 2; % 仿真时长,单位:秒
% 采样时间
t = 0:1/fs:total_time-1/fs;
% 调制信号为确知信号
mt = sin(2*pi*fm*t)+cos(pi*fm*t);
W = fm;
% FM 调制
[ sig_fm_send, deltaf ] = mod_fm(fc, beta, fs, mt, t, W, A);
fprintf('最大频偏 deltaf = %.6f Hz.\n', deltaf);
% 加噪声
snr = 50; % 信噪比
sig_fm_receive = awgn(sig_fm_send, snr, 'measured');
% 相干解调
ini_phase = 0;
[ sig_fm_demod ] = demod_fm_method4(sig_fm_receive, fc, fs, t, ini_phase);
% 绘图
nfft = length(sig_fm_receive);
freq = (-nfft/2:nfft/2-1).'*(fs/nfft);
figure;set(gcf,'color','w');
plot_length = min(500, length(sig_fm_receive));
subplot(1,2,1);
plot(t(1:plot_length), sig_fm_receive(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('FM接收信号');
subplot(1,2,2);
plot(freq, 10*log10(fftshift(abs(fft(sig_fm_receive,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('FM接收信号双边幅度谱');
coef = mean(abs(mt))/mean(abs(sig_fm_demod));
fprintf('norm(调制信号 - %.2f * 解调信号)/norm(调制信号) = %.4f.\n', coef, norm(mt-coef*sig_fm_demod)/norm(mt));
figure;set(gcf,'color','w');
plot(t(1:plot_length), mt(1:plot_length));xlim([t(1),t(plot_length)]);
hold on;
plot(t(1:plot_length), coef*sig_fm_demod(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('解调效果');
legend('调制信号','解调信号(放大后)');
附.13 文件 main_CommFM_example.m
clc;
clear;
close all;
% FM 调制解调仿真(使用Communications Toolbox工具箱)
% @author 木三百川
% 调制参数
A = 1; % 载波恒定振幅
fm = 2500; % 调制信号参数
beta = 1e-6; % 调频指数/调制指数
fc = 20000; % 载波频率
fs = 8*fc; % 采样率
total_time = 2; % 仿真时长,单位:秒
% 采样时间
t = 0:1/fs:total_time-1/fs;
% 调制信号为确知信号
mt = sin(2*pi*fm*t)+cos(pi*fm*t);
% FM 调制
freqdev = beta*fm;
ini_phase = 0;
sig_fm_send = A*fmmod(mt, fc, fs, freqdev, ini_phase);
% 加噪声
snr = 150; % 信噪比
sig_fm_receive = awgn(sig_fm_send, snr, 'measured');
% FM 解调
[ sig_fm_demod ] = fmdemod(sig_fm_receive, fc, fs, freqdev, ini_phase);
% 绘图
nfft = length(sig_fm_receive);
freq = (-nfft/2:nfft/2-1).'*(fs/nfft);
figure;set(gcf,'color','w');
plot_length = min(500, length(sig_fm_receive));
subplot(1,2,1);
plot(t(1:plot_length), sig_fm_receive(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('FM接收信号');
subplot(1,2,2);
plot(freq, 10*log10(fftshift(abs(fft(sig_fm_receive,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('FM接收信号双边幅度谱');
figure;set(gcf,'color','w');
plot(t(1:plot_length), mt(1:plot_length));xlim([t(1),t(plot_length)]);
hold on;
plot(t(1:plot_length), sig_fm_demod(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('解调效果');
legend('调制信号','解调信号');
fprintf('norm(调制信号 - 解调信号)/norm(调制信号) = %.4f.\n', norm(mt-sig_fm_demod)/norm(mt));
本文作者:木三百川
本文链接:https://www.cnblogs.com/young520/p/17559047.html
版权声明:本文系博主原创文章,著作权归作者所有。商业转载请联系作者获得授权,非商业转载请附上出处链接。遵循 署名-非商业性使用-相同方式共享 4.0 国际版 (CC BY-NC-SA 4.0) 版权协议。