【调制解调】DSB 双边带调幅
说明
学习数字信号处理算法时整理的学习笔记。同系列文章目录可见 《DSP 学习之路》目录,代码已上传到 Github - ModulationAndDemodulation。本篇介绍 DSB 双边带调幅信号的调制与解调,内附全套 MATLAB 代码。
1. DSB 调制算法
1.1 算法描述
在 AM 调幅信号中,载波分量并不携带信息,信息完全由边带传送。如果在 AM 调制模型中将直流 \(A_0\) 去掉,即可得到一种高调制效率的调制方式——抑制载波双边带信号(DSB - SC, Double Side Band with Suppressed Carrier),简称双边带信号(DSB),其时域表达式为:
式中:\(m(t)\) 是调制信号(携带要发出去的信息),它可以是确知信号,也可以是随机信号,其均值通常为 0;\(cos{\omega_ct}\) 是载波,\(\omega_c\) 是载波角频率,与载波频率 \(f_c\) 之间的关系为 \(\omega_c=2{\pi}f_c\)。DSB 的频谱与 AM 频谱相近,只是没有了在 \(\pm\omega_c\) 处的 \(\delta\) 函数,对式 \((1)\) 进行傅里叶变换,得到 DSB 信号的频谱(幅度谱)表达式:
式中,\(M(\omega)\) 是调制信号 \(m(t)\) 的频谱。DSB 信号的特性如下:
-
DSB 信号的频谱由上边带与下边带两部分组成,不存在载波分量,它的带宽仍是基带信号(调制信号)带宽 \(f_H\) 的 2 倍,即 \(B_{DSB}=2f_{H}\),与 AM 信号带宽相同。
-
由于不存在载波分量,有用功率 \(P_s\) 就是信号总功率 \(P_{DSB}\),即 \(P_s=P_{DSB}\),全部功率都用于信息传输,调制效率 \({\eta_{DSB}}=100\%\)。
1.2 DSB 信号调制示例
调制信号 \(m(t)\) 可以是确知信号,也可以是随机信号。当 \(m(t)\) 是确知信号时,不妨假设 \(m(t)\) 的时域表达式如下:
各调制参数取值:\(f_m=2500Hz\),\(f_c=20000Hz\)。信号采样率 \(f_s=8{f_c}\),仿真总时长为 \(2s\)。DSB 调制效果如下图所示(为了美观,时域只显示前 500 个点),调制信号 \(m(t)\) 双边幅度谱有四根离散谱线(\({\pm}2500Hz\)、\({\pm}1250Hz\)),载波 \(c(t)\) 的双边幅度谱有两根离散谱线(\({\pm}20000Hz\)),DSB 信号有八根离散谱线(\(\pm17500Hz\)、\(\pm18750Hz\)、\(\pm21250Hz\)、\(\pm22500Hz\)),代码详见附录 main_modDSB_example.m
与 mod_dsb.m
。
2. DSB 解调算法
解调是调制的逆过程,其作用是从接收的已调信号中恢复原基带信号(即调制信号)。DSB 信号的包络不再与调制信号 \(m(t)\) 的变化规律一致,因而不能采用简单的包络检波来恢复调制信号,通常采用相干解调的方法来进行解调。另一种方法是,插入很强的载波,使其成为或近似为 AM 信号,则可利用包络检波器恢复调制信号,这种方法被称为插入载波包络检波法,为了保证检波质量,插入的载波振幅应远大于信号的振幅,同时也要求插入的载波与调制载波同频同相。下面介绍三种解调方法并对 1.2 节中的 DSB 信号进行解调。
2.1 插入载波包络检波法
插入幅值为 \(A_0\) 的载波,得到:
其中 \(A_0 \geq {\lvert}{m(t)}{\rvert}_{max}\),这样就得到了一个 AM 信号,使用 AM 解调器进行解调即可,步骤如下:
- 第一步:加上载波 \({A_0}cos{\omega_ct}\),其中 \(A_0 \geq {\lvert}{m(t)}{\rvert}_{max}\),获得 AM 信号。
- 第二步:使用 AM 解调器进行解调。
对 1.2 节中的 DSB 信号,设定信噪比 \(SNR=50dB\),解调效果如下,计算误差,有:\(\sqrt{\sum{{\lvert}m(t_i)-\hat{m}(t_i){\rvert}^2}}/\sqrt{\sum{{\lvert}m(t_i){\rvert}^2}}\approx0.0022\)。更改插入载波的初始相位为 \({\phi_0}=\pi/4,\pi/2\),或者更改插入载波的中心频率为 \(0.8f_c,1.2f_c\) 后,解调效果变差,说明这种方法对插入载波同频同相的要求较高。
代码详见 demod_dsb_method1.m
和 main_demodDSB_example1.m
。AM 解调器详见本人同系列博客 【调制解调】AM 调幅。
2.2 相干解调(同步检测)
将 DSB 信号与同频同相的相干载波相乘,得到:
然后通过一个低通滤波器即可获得解调结果,步骤如下:
- 第一步:乘以相干载波(即乘以 \(2cos({\omega_ct}+{\phi_0})\),前面的 2 被用来做幅度补偿。
- 第二步:低通滤波器滤除高频载波,滤除 \(2{\omega}_c\)。
对 1.2 节中的 DSB 信号,设定信噪比 \(SNR=50dB\),解调效果如下,计算误差,有:\(\sqrt{\sum{{\lvert}m(t_i)-\hat{m}(t_i){\rvert}^2}}/\sqrt{\sum{{\lvert}m(t_i){\rvert}^2}}\approx0.0016\)。更改相干载波的初始相位为 \({\phi_0}=\pi/4,\pi/2\) 后,解调幅值发生失真,当与真实相位相差 \(\pi/2\) 时幅值失真最大;但更改相干载波的中心频率为 \(0.8f_c,1.2f_c\) 后,解调效果变得很差,波形完全失真,说明这种方法对相干载波同频同相的要求也较高。
代码详见 lpf_filter.m
、demod_dsb_method2.m
和 main_demodDSB_example2.m
。
2.3 数字正交解调
DSB 数字正交解调一般有以下两个步骤,它与相干解调(同步检测)法是等效的:
- 第一步:乘以正交相干载波得到 \({s_I}(t)\) 与 \({s_Q}(t)\),即 \({s_I}(t)=2s(t)cos({\omega_ct}+{\phi_0})\),\({s_Q}(t)=-2s(t)sin({\omega_ct}+{\phi_0})\),前面的 2 被用来做幅度补偿。
- 第二步:低通滤波器滤除 \({s_I}(t)\) 与 \({s_Q}(t)\) 中的高频分量,所得的 \(s_I(t)\) 即为解调结果。
对 1.2 节中的 DSB 信号,设定信噪比 \(SNR=50dB\),解调效果如下,计算误差,有:\(\sqrt{\sum{{\lvert}m(t_i)-\hat{m}(t_i){\rvert}^2}}/\sqrt{\sum{{\lvert}m(t_i){\rvert}^2}}\approx0.0016\)。与相干解调(同步检测)一样,这种方法对相干载波同频同相的要求较高。
代码详见 lpf_filter.m
、demod_dsb_method3.m
和 main_demodDSB_example3.m
。
3. DSB 仿真(MATLAB Communications Toolbox)
MATLAB 的 Communications Toolbox 中提供了 AM 调制函数 ammod,高斯白噪声函数 awgn,以及 AM 解调函数 amdemod,可以很方便地完成 DSB 信号仿真,设置 ammod
与 amdemod
的输入参数 carramp = 0
即为 DSB 的调制与解调(carramp
参数的默认值就是 0
,不显式设定这个参数也可以)。使用这三个函数实现上面 1.2 节中确知信号 \(m(t)\) 的 DSB 调制解调,调制后加噪声的效果如下:
解调效果如下:
解调信号与调制信号波形基本重回,计算误差,有:\(\sqrt{\sum{{\lvert}m(t_i)-\hat{m}(t_i){\rvert}^2}}/\sqrt{\sum{{\lvert}m(t_i){\rvert}^2}}\approx0.0025\)。代码详见附录 main_CommDSB_example.m
。
参考资料
[1] 楼才义,徐建良,杨小牛.软件无线电原理与应用[M].电子工业出版社,2014.
[2] 樊昌信,曹丽娜.通信原理.第7版[M].国防工业出版社,2012.
[3] CSDN - 通信原理之模拟幅度调制(线性调制)详解。
附录代码
附.1 文件 mod_dsb.m
function [ sig_dsb ] = mod_dsb(fc, fs, mt, t)
% MOD_DSB DSB 双边带调幅
% 输入参数:
% fc 载波中心频率
% fs 信号采样率
% mt 调制信号
% t 采样时间
% 输出参数:
% sig_dsb DSB 双边带调幅实信号
% @author 木三百川
% 生成信号
ct = cos(2*pi*fc*t);
sig_dsb = mt.*ct; % DSB 双边带调幅信号
% 绘图
nfft = length(sig_dsb);
freq = (-nfft/2:nfft/2-1).'*(fs/nfft);
figure;set(gcf,'color','w');
plot_length = min(500, length(sig_dsb));
subplot(3,2,1);
plot(t(1:plot_length), mt(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('调制信号m(t)');
subplot(3,2,2);
plot(freq, 10*log10(fftshift(abs(fft(mt,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('调制信号m(t)双边幅度谱');
subplot(3,2,3);
plot(t(1:plot_length), ct(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('载波c(t)');
subplot(3,2,4);
plot(freq, 10*log10(fftshift(abs(fft(ct,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('载波c(t)双边幅度谱');
subplot(3,2,5);
plot(t(1:plot_length), sig_dsb(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('DSB双边带调幅信号s(t)');
subplot(3,2,6);
plot(freq, 10*log10(fftshift(abs(fft(sig_dsb,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('DSB双边带调幅信号s(t)双边幅度谱');
end
附.2 文件 main_modDSB_example.m
clc;
clear;
close all;
% DSB 调制仿真(调制信号为确知信号)
% @author 木三百川
% 调制参数
fm = 2500; % 调制信号参数
fc = 20000; % 载波频率
fs = 8*fc; % 采样率
total_time = 2; % 仿真时长,单位:秒
% 采样时间
t = 0:1/fs:total_time-1/fs;
% 调制信号为确知信号
mt = sin(2*pi*fm*t)+cos(pi*fm*t);
% DSB 调制
[ sig_dsb ] = mod_dsb(fc, fs, mt, t);
附.3 文件 demod_dsb_method1.m
function [ sig_dsb_demod ] = demod_dsb_method1(sig_dsb_receive, fc, fs, t, phi0)
% DEMOD_DSB_METHOD1 DSB 插入载波包络检波法
% 输入参数:
% sig_dsb_receive DSB 接收信号,行向量
% fc 载波中心频率
% fs 信号采样率
% t 采样时间
% phi0 载波初始相位
% 输出参数:
% sig_dsb_demod 解调结果,与 sig_dsb_receive 等长
% @author 木三百川
% 第一步:插入载波
A0 = max(abs(sig_dsb_receive))/0.8;
sig_dsb2am = sig_dsb_receive + A0*cos(2*pi*fc*t+phi0);
% 第二步:使用 AM 解调器进行解调
[ sig_dsb_demod ] = demod_am_method4(sig_dsb2am, fs, t);
end
附.4 文件 main_demodDSB_example1.m
clc;
clear;
close all;
% DSB 解调仿真(调制信号为确知信号,插入载波包络检波法)
% @author 木三百川
% 调制参数
fm = 2500; % 调制信号参数
fc = 20000; % 载波频率
fs = 8*fc; % 采样率
total_time = 2; % 仿真时长,单位:秒
% 采样时间
t = 0:1/fs:total_time-1/fs;
% 调制信号为确知信号
mt = sin(2*pi*fm*t)+cos(pi*fm*t);
% DSB 调制
[ sig_dsb_send ] = mod_dsb(fc, fs, mt, t);
% 加噪声
snr = 50; % 信噪比
sig_dsb_receive = awgn(sig_dsb_send, snr, 'measured');
% 插入载波包络检波法
phi0 = 0;
[ sig_dsb_demod ] = demod_dsb_method1(sig_dsb_receive, fc, fs, t, phi0);
% 绘图
nfft = length(sig_dsb_receive);
freq = (-nfft/2:nfft/2-1).'*(fs/nfft);
figure;set(gcf,'color','w');
plot_length = min(500, length(sig_dsb_receive));
subplot(1,2,1);
plot(t(1:plot_length), sig_dsb_receive(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('DSB接收信号');
subplot(1,2,2);
plot(freq, 10*log10(fftshift(abs(fft(sig_dsb_receive,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('DSB接收信号双边幅度谱');
figure;set(gcf,'color','w');
plot(t(1:plot_length), mt(1:plot_length));xlim([t(1),t(plot_length)]);
hold on;
plot(t(1:plot_length), sig_dsb_demod(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('解调效果');
legend('调制信号','解调信号');
coef = mean(abs(mt))/mean(abs(sig_dsb_demod));
fprintf('norm(调制信号 - %.2f * 解调信号)/norm(调制信号) = %.4f.\n', coef, norm(mt-coef*sig_dsb_demod)/norm(mt));
附.5 文件 lpf_filter.m
function sig_lpf = lpf_filter(sig_data, cutfre)
% LPF_FILTER 自定义理想低通滤波器
% 输入参数:
% sig_data 待滤波数据
% cutfre 截止频率,范围 (0,1)
% 输出参数:
% sig_lpf 低通滤波结果
% @author 木三百川
nfft = length(sig_data);
lidx = round(nfft/2-cutfre*nfft/2);
ridx = nfft - lidx;
sig_fft_lpf = fftshift(fft(sig_data));
sig_fft_lpf([1:lidx,ridx:nfft]) = 0;
sig_lpf = real(ifft(fftshift(sig_fft_lpf)));
end
附.6 文件 demod_dsb_method2.m
function [ sig_dsb_demod ] = demod_dsb_method2(sig_dsb_receive, fc, fs, t, phi0)
% DEMOD_DSB_METHOD2 DSB 相干解调(同步检测)
% 输入参数:
% sig_dsb_receive DSB 接收信号,行向量
% fc 载波中心频率
% fs 信号采样率
% t 采样时间
% phi0 载波初始相位
% 输出参数:
% sig_dsb_demod 解调结果,与 sig_dsb_receive 等长
% @author 木三百川
% 第一步:乘以相干载波
sig_dsbct = 2*sig_dsb_receive.*cos(2*pi*fc*t+phi0);
% 第二步:低通滤波
sig_dsb_demod = lpf_filter(sig_dsbct, fc/(fs/2));
end
附.7 文件 main_demodDSB_example2.m
clc;
clear;
close all;
% DSB 解调仿真(调制信号为确知信号,相干解调(同步检测))
% @author 木三百川
% 调制参数
fm = 2500; % 调制信号参数
fc = 20000; % 载波频率
fs = 8*fc; % 采样率
total_time = 2; % 仿真时长,单位:秒
% 采样时间
t = 0:1/fs:total_time-1/fs;
% 调制信号为确知信号
mt = sin(2*pi*fm*t)+cos(pi*fm*t);
% DSB 调制
[ sig_dsb_send ] = mod_dsb(fc, fs, mt, t);
% 加噪声
snr = 50; % 信噪比
sig_dsb_receive = awgn(sig_dsb_send, snr, 'measured');
% 相干解调(同步检测)
phi0 = 0;
[ sig_dsb_demod ] = demod_dsb_method2(sig_dsb_receive, fc, fs, t, phi0);
% 绘图
nfft = length(sig_dsb_receive);
freq = (-nfft/2:nfft/2-1).'*(fs/nfft);
figure;set(gcf,'color','w');
plot_length = min(500, length(sig_dsb_receive));
subplot(1,2,1);
plot(t(1:plot_length), sig_dsb_receive(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('DSB接收信号');
subplot(1,2,2);
plot(freq, 10*log10(fftshift(abs(fft(sig_dsb_receive,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('DSB接收信号双边幅度谱');
figure;set(gcf,'color','w');
plot(t(1:plot_length), mt(1:plot_length));xlim([t(1),t(plot_length)]);
hold on;
plot(t(1:plot_length), sig_dsb_demod(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('解调效果');
legend('调制信号','解调信号');
coef = mean(abs(mt))/mean(abs(sig_dsb_demod));
fprintf('norm(调制信号 - %.2f * 解调信号)/norm(调制信号) = %.4f.\n', coef, norm(mt-coef*sig_dsb_demod)/norm(mt));
附.8 文件 demod_dsb_method3.m
function [ sig_dsb_demod ] = demod_dsb_method3(sig_dsb_receive, fc, fs, t, phi0)
% DEMOD_DSB_METHOD3 DSB 数字正交解调,与相干解调(同步检测)是等效的
% 输入参数:
% sig_dsb_receive DSB 接收信号,行向量
% fc 载波中心频率
% fs 信号采样率
% t 采样时间
% phi0 载波初始相位
% 输出参数:
% sig_dsb_demod 解调结果,与 sig_dsb_receive 等长
% @author 木三百川
% 第一步:乘以正交相干载波
sig_dsb_i = 2*sig_dsb_receive.*cos(2*pi*fc*t+phi0);
sig_dsb_q = -2*sig_dsb_receive.*sin(2*pi*fc*t+phi0);
% 第二步:低通滤波
sig_dsb_i_lpf = lpf_filter(sig_dsb_i, fc/(fs/2));
sig_dsb_q_lpf = lpf_filter(sig_dsb_q, fc/(fs/2));
sig_dsb_demod = sig_dsb_i_lpf;
end
附.9 文件 main_demodDSB_example3.m
clc;
clear;
close all;
% DSB 解调仿真(调制信号为确知信号,数字正交解调)
% @author 木三百川
% 调制参数
fm = 2500; % 调制信号参数
fc = 20000; % 载波频率
fs = 8*fc; % 采样率
total_time = 2; % 仿真时长,单位:秒
% 采样时间
t = 0:1/fs:total_time-1/fs;
% 调制信号为确知信号
mt = sin(2*pi*fm*t)+cos(pi*fm*t);
% DSB 调制
[ sig_dsb_send ] = mod_dsb(fc, fs, mt, t);
% 加噪声
snr = 50; % 信噪比
sig_dsb_receive = awgn(sig_dsb_send, snr, 'measured');
% 数字正交解调
phi0 = 0;
[ sig_dsb_demod ] = demod_dsb_method3(sig_dsb_receive, fc, fs, t, phi0);
% 绘图
nfft = length(sig_dsb_receive);
freq = (-nfft/2:nfft/2-1).'*(fs/nfft);
figure;set(gcf,'color','w');
plot_length = min(500, length(sig_dsb_receive));
subplot(1,2,1);
plot(t(1:plot_length), sig_dsb_receive(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('DSB接收信号');
subplot(1,2,2);
plot(freq, 10*log10(fftshift(abs(fft(sig_dsb_receive,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('DSB接收信号双边幅度谱');
figure;set(gcf,'color','w');
plot(t(1:plot_length), mt(1:plot_length));xlim([t(1),t(plot_length)]);
hold on;
plot(t(1:plot_length), sig_dsb_demod(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('解调效果');
legend('调制信号','解调信号');
coef = mean(abs(mt))/mean(abs(sig_dsb_demod));
fprintf('norm(调制信号 - %.2f * 解调信号)/norm(调制信号) = %.4f.\n', coef, norm(mt-coef*sig_dsb_demod)/norm(mt));
附.10 文件 main_CommDSB_example.m
clc;
clear;
close all;
% DSB 调制解调仿真(使用Communications Toolbox工具箱)
% @author 木三百川
% 调制参数
fm = 2500; % 调制信号参数
fc = 20000; % 载波频率
fs = 8*fc; % 采样率
total_time = 2; % 仿真时长,单位:秒
% 采样时间
t = 0:1/fs:total_time-1/fs;
% 调制信号为确知信号
mt = sin(2*pi*fm*t)+cos(pi*fm*t);
% DSB 调制
ini_phase = 0;
sig_dsb_send = ammod(mt, fc, fs, ini_phase);
% 加噪声
snr = 50; % 信噪比
sig_dsb_receive = awgn(sig_dsb_send, snr, 'measured');
% DSB 解调
[ sig_dsb_demod ] = amdemod(sig_dsb_receive, fc, fs, ini_phase);
% 绘图
nfft = length(sig_dsb_receive);
freq = (-nfft/2:nfft/2-1).'*(fs/nfft);
figure;set(gcf,'color','w');
plot_length = min(500, length(sig_dsb_receive));
subplot(1,2,1);
plot(t(1:plot_length), sig_dsb_receive(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('DSB接收信号');
subplot(1,2,2);
plot(freq, 10*log10(fftshift(abs(fft(sig_dsb_receive,nfft)/nfft))+eps));xlim([freq(1),freq(end)]);
xlabel('频率/hz');ylabel('幅度/dB');title('DSB接收信号双边幅度谱');
figure;set(gcf,'color','w');
plot(t(1:plot_length), mt(1:plot_length));xlim([t(1),t(plot_length)]);
hold on;
plot(t(1:plot_length), sig_dsb_demod(1:plot_length));xlim([t(1),t(plot_length)]);
xlabel('t/s');ylabel('幅度');title('解调效果');
legend('调制信号','解调信号');
coef = mean(abs(mt))/mean(abs(sig_dsb_demod));
fprintf('norm(调制信号 - %.2f * 解调信号)/norm(调制信号) = %.4f.\n', coef, norm(mt-coef*sig_dsb_demod)/norm(mt));
本文作者:木三百川
本文链接:https://www.cnblogs.com/young520/p/17542816.html
版权声明:本文系博主原创文章,著作权归作者所有。商业转载请联系作者获得授权,非商业转载请附上出处链接。遵循 署名-非商业性使用-相同方式共享 4.0 国际版 (CC BY-NC-SA 4.0) 版权协议。