08.03 魔术索引

题目

魔术索引。 在数组A[0...n-1]中,有所谓的魔术索引,满足条件A[i] = i。给定一个有序整数数组,编写一种方法找出魔术索引,若有的话,在数组A中找出一个魔术索引,如果没有,则返回-1。若有多个魔术索引,返回索引值最小的一个。

思路

讲真,这题。。。我不想说啥了。。。就是返回第一个nums[i]=i的下标。。。

代码

class Solution:
    def findMagicIndex(self, nums: List[int]) -> int:
        for i in range(len(nums)):
            if i == nums[i]:
                return i
        return -1

复杂度分析

时间复杂度:O(n)

空间复杂度:O(1)

 

 

04 寻找两个正序数组中的中位数

题目

给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。

请你找出这两个正序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。

你可以假设 nums1 和 nums2 不会同时为空。

思路

由于题目规定了时间复杂度为O(log(m+n)),所以比较合适的算法为二分查找。

代码

class Solution:
    def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
        def getKthElement(k):
            """
            - 主要思路:要找到第 k (k>1) 小的元素,那么就取 pivot1 = nums1[k/2-1] 和 pivot2 = nums2[k/2-1] 进行比较
            - 这里的 "/" 表示整除
            - nums1 中小于等于 pivot1 的元素有 nums1[0 .. k/2-2] 共计 k/2-1 个
            - nums2 中小于等于 pivot2 的元素有 nums2[0 .. k/2-2] 共计 k/2-1 个
            - 取 pivot = min(pivot1, pivot2),两个数组中小于等于 pivot 的元素共计不会超过 (k/2-1) + (k/2-1) <= k-2 个
            - 这样 pivot 本身最大也只能是第 k-1 小的元素
            - 如果 pivot = pivot1,那么 nums1[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums1 数组
            - 如果 pivot = pivot2,那么 nums2[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums2 数组
            - 由于我们 "删除" 了一些元素(这些元素都比第 k 小的元素要小),因此需要修改 k 的值,减去删除的数的个数
            """
            
            index1, index2 = 0, 0
            while True:
                # 特殊情况
                if index1 == m:
                    return nums2[index2 + k - 1]
                if index2 == n:
                    return nums1[index1 + k - 1]
                if k == 1:
                    return min(nums1[index1], nums2[index2])

                # 正常情况
                newIndex1 = min(index1 + k // 2 - 1, m - 1)
                newIndex2 = min(index2 + k // 2 - 1, n - 1)
                pivot1, pivot2 = nums1[newIndex1], nums2[newIndex2]
                if pivot1 <= pivot2:
                    k -= newIndex1 - index1 + 1
                    index1 = newIndex1 + 1
                else:
                    k -= newIndex2 - index2 + 1
                    index2 = newIndex2 + 1
        
        m, n = len(nums1), len(nums2)
        totalLength = m + n
        if totalLength % 2 == 1:
            return getKthElement((totalLength + 1) // 2)
        else:
            return (getKthElement(totalLength // 2) + getKthElement(totalLength // 2 + 1)) / 2

复杂度分析

时间复杂度: O(log(m+n))

空间复杂度:O(1)

posted on 2020-07-31 17:41  eryoung2  阅读(131)  评论(0编辑  收藏  举报