2019 牛客网 第七场 H pair

 题目链接:https://ac.nowcoder.com/acm/contest/887/H

 题意:

给定A,B,C问在[1,A]和[1,B]中有多少对x,y满足x&y>C或者x^y<C.

数据范围:1<=A,B,C<=1e9,测试用例 T<=100 .

思路:

根据题意本题可以用数位dp来解。

/* and   0&0=0;  0&1=0;   1&0=0;    1&1=1;
   xor   0 ^ 0=0;  0 ^ 1=1;  1^ 0=1;   1^1=0;
   
3
3 4 2  
4 5 2    
7 8 5

5
7
31

1<=x<=a 
1<=y<=b 

x&y>c x^y<c 

*/

#include <iostream>
#include <bitset>
using namespace std;
int main()
{
    int t;
    cin>>t;
    while(t--)
    {
    int a,b,c,ans=0;
    cin>>a>>b>>c;
    for(int i=1;i<=a;i++)
        for(int j=1;j<=b;j++)
        {
            if((i^j)<c) 
            {
                ans++; 
                cout<<(i^j)<<" ";
                bitset<8> aa(i);
                bitset<8> bb(j);
                bitset<8> cc(i^j);
                cout<<aa<<" "<<i<<endl;
                cout<<bb<<" "<<j<<endl;
                cout<<cc<<" "<<(i^j)<<endl<<endl;
            }    
        } 
    cout<<ans<<endl;    
    }
    return 0;
} 
/*
7 8 5
0 3 2 4 3 0 1 4 2 1 0 4 0 1 2 3 4 1 0 3 2 4 2 3 0 1 4 3 2 1 0 31

0 3 2 4 3 0 1 4 2 1 0 4 0 1 2 3 4 1 0 3 2 4 2 3 0 1 4 3 2 1 0 31

0 3 2 4 3 0 1 4 2 1 0 4 0 1 2 3 4 1 0 3 2 4 2 3 0 1 4 3 2 1 0 0 32

0 3 2 4 3 0 1 4 2 1 0 0 1 2 4 1 0 3 4 2 3 0 22

0 3 2 3 0 1 2 1 0 0 10

0 0 0 0 0 0 0 7

0 0 1 1 0 0 1 1 0 0 1 1 0 13

0 2 0 1 2 1 0 0 1 2 1 0 2 2 0 1 2 1 0 19

0 3 2 3 0 1 2 1 0 0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0 25

0 3 2 4 3 0 1 4 2 1 0 4 0 1 2 3 4 1 0 3 2 4 2 3 0 1 4 3 2 1 0 31

*/
/*
00000001
00000001
0
00000010
00000010
0
00000010
00000011
1
00000011
00000010
1
00000011
00000011
0
00000100
00000100
0
00000100
00000101
1

7
*/


/*
00000001 00000010 0 3
00000001 00000100 0 5
00000001 00000011 1 2
00000010 00000001 0 3
00000010 00000100 0 6
00000011 00000100 0 7
00000011 00000001 1 2
*/

/*
x&y>c x^y<c 2 
00000001 00000001 1 0
00000010 00000010 2 0
00000010 00000011 2 1
00000011 00000010 2 1
00000011 00000011 3 0

*/
 /*
 /*
00000001 00000100 0 5
00000001 00000110 0 7
00000001 00000111 1 6
00000001 00001000 0 9
00000010 00000100 0 6
00000010 00000101 0 7
00000010 00000111 2 5
00000010 00001000 0 10
00000011 00000100 0 7
00000011 00000101 1 6
00000011 00000110 2 5
00000011 00001000 0 11
00000100 00000001 0 5
00000100 00000010 0 6
00000100 00000011 0 7
00000100 00001000 0 12
00000101 00000010 0 7
00000101 00000011 1 6
00000101 00001000 0 13
00000110 00000001 0 7
00000110 00000011 2 5
00000110 00001000 0 14
00000111 00000001 1 6
00000111 00000010 2 5
00000111 00001000 0 15
*/

/*
                            x&y>c x^y<c 
00000001 00000001 1 0
00000001 00000010 0 3
00000001 00000011 1 2
00000001 00000101 1 4

00000010 00000001 0 3
00000010 00000010 2 0
00000010 00000011 2 1

00000010 00000110 2 4

00000011 00000001 1 2
00000011 00000010 2 1
00000011 00000011 3 0
00000011 00000111 3 4
00000100 00000100 4 0
00000100 00000101 4 1
00000100 00000110 4 2
00000100 00000111 4 3

00000101 00000001 1 4

00000101 00000100 4 1
00000101 00000101 5 0
00000101 00000110 4 3
00000101 00000111 5 2

00000110 00000010 2 4

00000110 00000100 4 2
00000110 00000101 4 3
00000110 00000110 6 0
00000110 00000111 6 1

00000111 00000011 3 4
00000111 00000100 4 3

00000111 00000101 5 2
00000111 00000110 6 1

00000111 00000111 7 0

*/
 */
分析题意的代码

 大佬的解析:

题意:给你 三个数A,B,C让你从  1~A内选择一个X,1~B内选择一个Y

找出<X,Y>的对数,使得 X&Y > C  ||  X^Y < C

平常做的数位dp都是从一个区间内找数的个数,而现在是从两个区间找数对的对数,那就在之前的三维dp上多开两维,之前是枚举一个区间上限,现在改成两个区间上限,其他的和普通的数位dp一样

注意数位dp找到的是从0开始的  0 & Y 和 X&0  一定都小于C 不需要管

但是  0 ^ Y 和 X^0  当Y  和  X  小于C时  是满足的  所以结果还需要减去 ^运算  X 或  Y  为零时的情

原文链接:https://blog.csdn.net/Daxian911/article/details/99462695

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
#include <vector>
#include <queue>
using namespace std;
#define ll long long
#define int long long
const int maxn=1e5+5;
ll dp[32][3][3][2][2];
int a[32], b[32],c[32];
ll dfs1(int pos, int And, int Xor, int limit1, int limit2){
    if(pos == -1) {
        if(And == 1 || Xor == 2) return 1;
        return 0;
    }
    if(dp[pos][And][Xor][limit1][limit2] != -1) return dp[pos][And][Xor][limit1][limit2];
    int up1 = limit1 ? a[pos] : 1;
    int up2 = limit2 ? b[pos] : 1;
    ll ans = 0;
    for(int i = 0; i <= up1; i++) {
        for(int j = 0; j <= up2; j++) {
            int x = i & j, y = i ^ j;
            int _and = And;
            int _xor = Xor;
            if(And == 0) {
                if(x > c[pos]) _and = 1;
                else if(x < c[pos]) _and = 2;
            }
            if(Xor == 0) {
                if(y > c[pos]) _xor = 1;
                else if(y < c[pos]) _xor = 2;
            }
            ans += dfs1(pos - 1, _and, _xor, (i == up1) && limit1, limit2 &&(j == up2));
        }
    }
    dp[pos][And][Xor][limit1][limit2] = ans;
    return ans;
}
signed main()
{
    int T, A, B, C;
    scanf("%lld", &T);
 
    while(T--) {
        memset(dp, -1, sizeof(dp));
        scanf("%lld%lld%lld", &A, &B, &C);
        int i = 0, j = 0, k = 0;
        int ans = min(C - 1, A) + min (C - 1, B) + 1;
        while(i < 30) {
            a[i++] = (A & 1); A>>=1;
        }
        while(j < 30) {
            b[j++] = (B & 1); B>>=1;
        }
        while(k < 30) {
            c[k++] = (C & 1); C>>=1;
        }
        printf("%lld\n", dfs1(29,0,0,1,1) - ans);
    }
    return 0;
}
大佬的代码,我直接复制了

另外一个大佬的代码解析:

思路:数位dp,定义一个dp[len][lim1][lim2][ok1][ok2][za][zb]。

len代表当前枚举的二进制位,lim1,lim2分别代表x和y的上限,

ok1代表对于x&y>C是否成立,成立是1,有可能成立是0,不可能成立是-1,

ok2代表对于x^y<C是否成立,1代表不成立,0代表可能成立,-1代表成立,

za和zb分别代表x和y的数中是否出现了1,因为x和y的二进制位不能是全零。转移的话代码中非常容易看懂。
原文链接:https://blog.csdn.net/qq_43316231/article/details/98968980

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int t;
ll A,B,C,f[50],g[50],h[50];
ll dp[66][2][2][3][3][2][2];
ll dfs(ll len,ll lim1,ll lim2,ll ok1,ll ok2,ll za,ll zb){
    ll &ret=dp[len][lim1][lim2][ok1+1][ok2+1][za][zb];
    if(ret!=-1)return ret;
    if(len==0){
        ret=za&&zb&&(ok1>0||ok2<0);
        return ret;
    }
    ret=0; --len;
    int up1=lim1?1:f[len];
    int up2=lim2?1:g[len];
    for(int x=0;x<=up1;x++)for(int y=0;y<=up2;y++)
    ret+=dfs(len,lim1|(x<f[len]),lim2|(y<g[len]),ok1==0?(x&y)-h[len]:ok1,ok2==0?(x^y)-h[len]:ok2,za|x,zb|y);
    return ret;
}
int main(){
    scanf("%d",&t);
    while(t--){
        memset(dp,-1,sizeof(dp));
        scanf("%lld%lld%lld",&A,&B,&C);
        for(int i=0;i<30;i++){
            f[i]=A%2,A/=2;
            g[i]=B%2,B/=2;
            h[i]=C%2,C/=2;
        }
        printf("%lld\n",dfs(31,0,0,0,0,0,0));
    }
    return 0;
}
另一个大佬的,我又复制了

 结合大佬的

我自己水了一遍,嘻嘻

/* and   0&0=0;  0&1=0;   1&0=0;    1&1=1;
   xor   0 ^ 0=0;  0 ^ 1=1;  1^ 0=1;   1^1=0;
3 4 2 
5 2   
8 5
7
1<=x<=a
1<=y<=b
条件 x&y>c x^y<c 分析得 只满足x^y<c 即可。
a,b,c<1e9 转换为二进制数位是30个。
*/
 
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
 
LL dp[32][3][3][2][2], a[32],b[32],c[32];
 
LL dfs(LL len, LL And, LL Xor, LL limit1, LL limit2){
    if(len==-1)
    {
        if(And == 1 || Xor == 2) return 1ll;
        return 0;
    }
    //满足条件,直接返回最底层答案。
    if(dp[len][And][Xor][limit1][limit2] != -1)
        return dp[len][And][Xor][limit1][limit2];
    //没到达上界并且数位已经统计过,直接返回数量。
     
    LL up1 = limit1 ? a[len] : 1;
    LL up2 = limit2 ? b[len] : 1;
    LL cnt =0;
      for(LL i = 0; i <= up1; i++) {
        for(LL j = 0; j <= up2; j++) {
            LL x = i & j, y = i ^ j;
            LL _and = And;
            LL _xor = Xor;
            if(And == 0) {
                if(x > c[len]) _and = 1;
                else if(x < c[len]) _and = 2;
            }
            if(Xor == 0) {
                if(y > c[len]) _xor = 1;
                else if(y < c[len]) _xor = 2;
            }
            cnt += dfs(len-1,_and,_xor,(i == up1) && limit1,limit2 &&(j==up2));
        }
    }
    dp[len][And][Xor][limit1][limit2]=cnt;
    return cnt;
}
 
LL solve(LL aa,LL bb,LL cc)
{
    LL ans=min(cc - 1, aa) + min (cc - 1, bb) + 1;
    for(LL i=0;i<30;i++){
        a[i]=(aa & 1); aa>>=1;
        b[i]=(bb & 1); bb>>=1;
        c[i]=(cc & 1); cc>>=1;
        //b[i]=bb%2,bb/=2;
        //c[i]=cc%2,cc/=2;
        }
    return (dfs(29,0,0,1,1)-ans);
}
 
int main()
{
    int t;
    cin>>t;
    while(t--)
    {
        memset(dp, -1, sizeof(dp));
        LL a,b,c;
        cin>>a>>b>>c;
        cout<<solve(a,b,c)<<endl;   
    }
    return 0;
}
View Code

 

posted @ 2019-08-14 13:51  Young-children  阅读(178)  评论(0编辑  收藏  举报