基于matlab点云工具箱对点云进行处理一:去除地面,保留剩下的点

基于matlab点云工具箱的点云地面分割(去除地面,保留剩下的点)

步骤:

  1. 读取velodyne数据包pcap文件内的点云数据
  2. 使用pcdownsample函数对点云数据进行体素化采样,减少点云数量
  3. 使用find函数对点云进行筛选
  4. 使用pcdnoise去除点云内的噪声
  5. 筛选低点的点云(地面一般较低)
  6. 使用pcfitplane函数匹配平面(地面)
  7. 输出

相关文件点我下载https://download.csdn.net/download/rmrgjxeivt/59553218

基于matlab点云工具箱对点云进行处理一:去除地面,保留剩下的点https://blog.csdn.net/rmrgjxeivt/article/details/121830344
基于matlab点云工具箱对点云进行处理二:对点云进行欧式聚类,获得聚类后点云簇的外接矩形https://blog.csdn.net/rmrgjxeivt/article/details/121830919
基于matlab点云工具箱对点云进行处理三:对点云进行欧式聚类,使用三角剖分处理后获取点云簇的外接凸多边形https://blog.csdn.net/rmrgjxeivt/article/details/121831507
基于matlab点云工具箱对点云进行处理四:对点云进行欧式聚类,并获得包围点云簇的外接凹多边形https://blog.csdn.net/rmrgjxeivt/article/details/121831934
在这里插入图片描述
在这里插入图片描述


% 读取激光的PCAP文件
% 筛选感兴趣区域
% 播放筛选后的点云

veloReader = velodyneFileReader('2021-11-23-12-49-43_Velodyne-HDL-32-Data.pcap','VLP32c');


%% 设置感兴趣区域

vehPara.length = 5.5;
vehPara.width = 2.2;
vehPara.d = 2.3; % 轴距
vehPara.rearOverhang = 1; % 前悬
vehPara.rearOverhang = 1; % 后悬
vehPara.CG2Rear = 1.45; % 质心到后轴


insRegion = [-20 50 -10 10 0 2]; % 感兴趣区域[minX maxX minY maxY]
groundRegion = [-1, 0.2]; % 地面区域,z轴方向

xLimits = [insRegion(1), insRegion(2)];
yLimits = [insRegion(3), insRegion(4)];
zLimits = [insRegion(5), insRegion(6)]; % 原点在后轴中心,因此此处相对于轮芯高度

player = pcplayer(xLimits,yLimits,zLimits);

xlabel(player.Axes,'X (m)');
ylabel(player.Axes,'Y (m)');
zlabel(player.Axes,'Z (m)');

veloReader.CurrentTime = veloReader.StartTime + seconds(0.3);

disp(['frame数量',num2str(veloReader.NumberOfFrames)])

pause(2)

frameID = 2700;


while(hasFrame(veloReader) && player.isOpen() && (veloReader.CurrentTime < veloReader.EndTime))
ptCloudObj = readFrame(veloReader,frameID);
frameID

tic
lidarLo = [3.5 0 1.1 0 0 0];

% 取出XYZ
xTemp = ptCloudObj.Location(:,:,2)+lidarLo(1);
yTemp = -ptCloudObj.Location(:,:,1)+lidarLo(2);
zTemp = ptCloudObj.Location(:,:,3)+lidarLo(3);






pc = [xTemp(:) yTemp(:) zTemp(:) single(ptCloudObj.Intensity(:))];










% 对地面的点进行范围筛选
zMin = groundRegion(1);
zMax = groundRegion(2);

pcObj = pointCloud(pc(:,1:3));
pcObj.Intensity = pc(:,4);

pcOutNum = 30000; % 输出的点云数量

objPointVeh = zeros(pcOutNum,4,'single');
objPointVeh(:,1) = single(insRegion(2));
objPointVeh(:,2) = single(insRegion(4));
objPointVeh(:,3) = single(insRegion(6));
objPointVeh(:,4) = single(0);


% tic
%% 降低点云密度 coder会报错
%     gridStep = 0.05;
%     pcObj_downSample = pcdownsample(pcObj,'gridAverage',gridStep); % 降低点云密度

maxNumPoints = 6;
pcObj_downSample = pcdownsample(pcObj,'nonuniformGridSample',maxNumPoints);

%     percentage = 0.3;
%     pcObj_downSample = pcdownsample(pcObj,'random',percentage);

%% 筛选感兴趣区域(单位米),并排除车身内部的点云
xLimits = [insRegion(1), insRegion(2)];
yLimits = [insRegion(3), insRegion(4)];
zLimits = [insRegion(5), insRegion(6)]; % 原点在后轴中心,因此此处相对于轮芯高度

indices = find((pcObj_downSample.Location(:, 2) >= yLimits(1) ...
    & pcObj_downSample.Location(:,2) <=  yLimits(2) ...
    & pcObj_downSample.Location(:,1) >=  xLimits(1) ...
    & pcObj_downSample.Location(:,1) <=  xLimits(2) ...
    & pcObj_downSample.Location(:,3) <=  zLimits(2) ...
    & pcObj_downSample.Location(:,3) >=  zLimits(1) ...
    & ~(pcObj_downSample.Location(:,1)<(vehPara.length-vehPara.rearOverhang) ...
    & pcObj_downSample.Location(:,1)>(-vehPara.rearOverhang) ...
    & pcObj_downSample.Location(:,2)<vehPara.width/2 ...
    & pcObj_downSample.Location(:,2)>-vehPara.width/2)));% 设置感兴趣的点云区域

if ~isempty(indices)
    pcObj_downSample = select(pcObj_downSample,indices);
    
    %% 去除噪声
    [pcObj_downSample,inlierIndices,~] = pcdenoise(pcObj_downSample);
    
    pcID_noNoise = 1:1:pcObj_downSample.Count;
    
    if ~isempty(inlierIndices)
        % 分离出地面
        % Set the maximum point-to-plane distance (2cm) for plane fitting.
        maxDistance = 0.2;
        
        % Set the normal vector of the plane.
        referenceVector = [0,0,1];
        
        % Set the maximum angular distance to 5 degrees.
        maxAngularDistance = 10;
        
        % 筛选出较低的点用于去除地面(地面较低)
        % 只对范围内的点进行平面拟合(很低的那一部分点)
        indices = find((pcObj_downSample.Location(:, 3) >= zMin ...
            & pcObj_downSample.Location(:, 3) <= zMax));
        
        if ~isempty(indices)
            pcObj_lier = select(pcObj_downSample,indices);
            pcID_lier = pcID_noNoise(indices);
            
            % Detect the first plane, the table, and extract it from the point cloud.
            % 输出不是地面的点
            [~,inlierIndices,outlierIndices] = pcfitplane(pcObj_lier,maxDistance,referenceVector,maxAngularDistance);
            pcID_outlier = pcID_lier(outlierIndices); % 不是地面的点的ID
            pcID_inlier = pcID_lier(inlierIndices); % 是地面的点的ID
            
            % 从点云中删除属于地面的点,获得过滤后的点云
            pcID_out = pcID_noNoise;
            pcID_out(pcID_inlier) = [];
            %             outlierIndices = [];
            
            if ~isempty(outlierIndices) % 非空才输出
                pcRemainObj = select(pcObj_downSample,pcID_out);
            else
                pcRemainObj = pcObj_downSample;
            end
        else
            pcRemainObj = pcObj_downSample;
        end
        cowPCRemain = size(pcRemainObj.Location)*[1;0];
        if cowPCRemain>pcOutNum
            cowPCRemain = pcOutNum;
        end
        objPointVeh(1:cowPCRemain,:) = [pcRemainObj.Location pcRemainObj.Intensity];
        
        
        %         pcRemainObj = pcObj;
        %         cowPCRemain = size(pcRemainObj.Location)*[1;0];
        %         objPointVeh(1:cowPCRemain,:) = pcRemainObj.Location;
    end
end


% figure(2)
% % pcshow(plane1)
% pcshow(pcPlanel)
% title('First Plane')

% cowPCRemain = length(pcObj.Location(:,1));
% pcRemain(1:cowPCRemain,:) = pcObj.Location;

% figure(3)
% % pcshow(plane1)
% pcshow(pcRemain)
% title('remainPtCloud')












objVehPoint = objPointVeh;
%%
pcObjOut =   pointCloud(objVehPoint(:,1:3));
pcObjOut.Intensity = objVehPoint(:,4);

frameID = frameID+1;


toc

view(player,pcObjOut);


pause(0.02);

end

posted @ 2021-12-09 16:35  你看不见我的blog  阅读(286)  评论(0编辑  收藏  举报  来源