基于matlab点云工具箱对点云进行处理三:对点云进行欧式聚类,使用三角剖分处理后获取点云簇的外接凸多边形

基于matlab点云工具箱对点云进行处理三:对点云进行欧式聚类,使用三角剖分处理后获取点云簇的外接凸多边形

步骤:

  1. 读取velodyne数据包pcap文件内的点云数据
  2. 使用pcdownsample函数对点云数据进行体素化采样,减少点云数量
  3. 使用find函数对点云进行筛选
  4. 使用pcdnoise去除点云内的噪声
  5. 使用pcsegdist进行欧式聚类
  6. 使用delaunayTriangulation进行三角剖分
  7. 使用convexHull获得外接凸包的顶点ID

相关程序在这里https://download.csdn.net/download/rmrgjxeivt/59557139

存在的问题:
弯曲道路的护栏(例如匝道)被识别为半圆形状,误识别区域巨大

基于matlab点云工具箱对点云进行处理一:去除地面,保留剩下的点https://blog.csdn.net/rmrgjxeivt/article/details/121830344
基于matlab点云工具箱对点云进行处理二:对点云进行欧式聚类,获得聚类后点云簇的外接矩形https://blog.csdn.net/rmrgjxeivt/article/details/121830919
基于matlab点云工具箱对点云进行处理三:对点云进行欧式聚类,使用三角剖分处理后获取点云簇的外接凸多边形https://blog.csdn.net/rmrgjxeivt/article/details/121831507
基于matlab点云工具箱对点云进行处理四:对点云进行欧式聚类,并获得包围点云簇的外接凹多边形https://blog.csdn.net/rmrgjxeivt/article/details/121831934
在这里插入图片描述
在这里插入图片描述


% 读取激光的PCAP文件
% 筛选感兴趣区域
% 播放筛选后的点云

veloReader = velodyneFileReader('2021-11-23-12-49-43_Velodyne-HDL-32-Data.pcap','VLP32c');


%% 设置感兴趣区域

vehPara.length = 5.5;
vehPara.width = 2.2;
vehPara.d = 2.3; % 轴距
vehPara.rearOverhang = 1; % 前悬
vehPara.rearOverhang = 1; % 后悬
vehPara.CG2Rear = 1.45; % 质心到后轴


insRegion = [-20 50 -10 10 0 2]; % 感兴趣区域[minX maxX minY maxY]
groundRegion = [-1, 0.2]; % 地面区域,z轴方向

xLimits = [insRegion(1), insRegion(2)];
yLimits = [insRegion(3), insRegion(4)];
zLimits = [insRegion(5), insRegion(6)]; % 原点在后轴中心,因此此处相对于轮芯高度

player = pcplayer(xLimits,yLimits,zLimits);

xlabel(player.Axes,'X (m)');
ylabel(player.Axes,'Y (m)');
zlabel(player.Axes,'Z (m)');

veloReader.CurrentTime = veloReader.StartTime + seconds(0.3);

disp(['frame数量',num2str(veloReader.NumberOfFrames)])

pause(2)

frameID = 1000;


while(hasFrame(veloReader) && player.isOpen() && (veloReader.CurrentTime < veloReader.EndTime))
    ptCloudObj = readFrame(veloReader,frameID);
    frameID
    
    tic
    lidarLo = [3.5 0 1.1 0 0 0];
    
    % 取出XYZ
    xTemp = ptCloudObj.Location(:,:,2)+lidarLo(1);
    yTemp = -ptCloudObj.Location(:,:,1)+lidarLo(2);
    zTemp = ptCloudObj.Location(:,:,3)+lidarLo(3);
    
    
    
    
    
    
    
    pc = [xTemp(:) yTemp(:) zTemp(:) single(ptCloudObj.Intensity(:))];
    
    
    
    % max(pc(:,1))
    % min(pc(:,1))
    % max(pc(:,2))
    
    % 对地面的点进行范围筛选
    zMin = groundRegion(1);
    zMax = groundRegion(2);
    
    pcObj = pointCloud(pc(:,1:3));
    pcObj.Intensity = pc(:,4);
    
    pcOutNum = 30000; % 输出的点云数量
    
    objPointVeh = zeros(pcOutNum,4,'single');
    objPointVeh(:,1) = single(insRegion(2));
    objPointVeh(:,2) = single(insRegion(4));
    objPointVeh(:,3) = single(insRegion(6));
    objPointVeh(:,4) = single(0);
    
    
    % tic
    %% 降低点云密度 coder会报错
    gridStep = 0.05;
    pcObj_downSample = pcdownsample(pcObj,'gridAverage',gridStep); % 降低点云密度
    
    % maxNumPoints = 6;
    % pcObj_downSample = pcdownsample(pcObj,'nonuniformGridSample',maxNumPoints);
    
    %     percentage = 0.3;
    %     pcObj_downSample = pcdownsample(pcObj,'random',percentage);
    
    %% 筛选感兴趣区域(单位米),并排除车身内部的点云
    xLimits = [insRegion(1), insRegion(2)];
    yLimits = [insRegion(3), insRegion(4)];
    zLimits = [insRegion(5), insRegion(6)]; % 原点在后轴中心,因此此处相对于轮芯高度
    
    indices = find((pcObj_downSample.Location(:, 2) >= yLimits(1) ...
        & pcObj_downSample.Location(:,2) <=  yLimits(2) ...
        & pcObj_downSample.Location(:,1) >=  xLimits(1) ...
        & pcObj_downSample.Location(:,1) <=  xLimits(2) ...
        & pcObj_downSample.Location(:,3) <=  zLimits(2) ...
        & pcObj_downSample.Location(:,3) >=  zLimits(1) ...
        & ~(pcObj_downSample.Location(:,1)<(vehPara.length-vehPara.rearOverhang) ...
        & pcObj_downSample.Location(:,1)>(-vehPara.rearOverhang) ...
        & pcObj_downSample.Location(:,2)<vehPara.width/2 ...
        & pcObj_downSample.Location(:,2)>-vehPara.width/2)));% 设置感兴趣的点云区域
    
    if ~isempty(indices)
        pcObj_downSample = select(pcObj_downSample,indices);
        
        %% 去除噪声
        [pcObj_downSample,inlierIndices,~] = pcdenoise(pcObj_downSample);
        
        pcID_noNoise = 1:1:pcObj_downSample.Count;
        
        if ~isempty(inlierIndices)
            outlierIndices = [];
            
            if ~isempty(outlierIndices) % 非空才输出
                pcRemainObj = select(pcObj_downSample,pcID_out);
            else
                pcRemainObj = pcObj_downSample;
            end
        else
            pcRemainObj = pcObj_downSample;
        end
        cowPCRemain = size(pcRemainObj.Location)*[1;0];
        if cowPCRemain>pcOutNum
            cowPCRemain = pcOutNum;
        end
        objPointVeh(1:cowPCRemain,:) = [pcRemainObj.Location pcRemainObj.Intensity];
        
        
    end
    % end
    
    
    % figure(2)
    % % pcshow(plane1)
    % pcshow(pcPlanel)
    % title('First Plane')
    
    % cowPCRemain = length(pcObj.Location(:,1));
    % pcRemain(1:cowPCRemain,:) = pcObj.Location;
    
    % figure(3)
    % % pcshow(plane1)
    % pcshow(pcRemain)
    % title('remainPtCloud')
    
    
    %% 欧式聚类
    % 最小聚类欧式距离
    minDist = 0.5;
    
    % 执行欧式聚类分割
    [labels,numClusters] = pcsegdist(pcRemainObj,minDist);
    
    % 显示分割结果
    hsvColorMap = hsv(numClusters);
    hsvColorMap_H = hsvColorMap(:,1);
    hsvColorMap_S = hsvColorMap(:,2);
    hsvColorMap_V = hsvColorMap(:,3);
    %     view(player,pcRemainObj.Location,[hsvColorMap_H(labels) hsvColorMap_S(labels) hsvColorMap_V(labels)]);
    %     pcshow(pcRemainObj.Location,labels);
    %     colormap(hsv(numClusters));
    
    
    % 遍历所有聚类结果
    figure(5);
    clf
    axis([insRegion(1) insRegion(2) insRegion(3) insRegion(4)])
    title('欧式聚类分割');
    xlabel('X(m)');
    ylabel('Y(m)');
    zlabel('Z(m)');
    hold on;
    for i = 1:1:numClusters
        %% 进行多边形框计算
        pcClusterObjTemp = select(pcRemainObj,find(labels == i));
        
        % 求解获得凸多边形进行多边形框计算
        if length(pcClusterObjTemp.Location(:,1))>=3 % 
            triPart = delaunayTriangulation(double(pcClusterObjTemp.Location(:,1)), ...
                double(pcClusterObjTemp.Location(:,2)));
            hull = convexHull(triPart);
            
            plot(pcClusterObjTemp.Location(hull,1), pcClusterObjTemp.Location(hull,2), 'r');
            
        end
    end
    hold off
    
    
    
    
    
    
    objVehPoint = objPointVeh;
    %%
    pcObjOut =   pointCloud(objVehPoint(:,1:3));
    pcObjOut.Intensity = objVehPoint(:,4);
    
    frameID = frameID+1;
    
    
    toc
    
    view(player,pcObjOut);
    %     figure(4)
    %     pcshow(pcObjOut.Location)
    %     xlabel('X(m)');
    %     ylabel('Y(m)');
    %     zlabel('Z(m)');
    %     axis([insRegion(1) insRegion(2) insRegion(3) insRegion(4)])
    
    pause(0.02);
    
end

posted @ 2021-12-09 16:48  你看不见我的blog  阅读(46)  评论(0编辑  收藏  举报  来源