[微积分与无穷级数]AMM Problems笔记
AMM Problems
某个月黑风高的下午,Yoshinow2001打开了一个积分题(见Problem12221),他发现他不会做,但是有论文,花了一个晚上终于搞懂了整个过程,写完这题的他不禁感叹数学的奇妙(//̀Д/́/),里面许多方法其实并不陌生,以及想稍微整理一下整个题,于是就有了这篇blog。
如果不咕咕咕的话,之后这里应该会持续更新一些American Mathematical Monthly(AMM:https://www.mat.uniroma2.it/~tauraso/AMM/amm.html)上的题目解答的整理,微积分和无穷级数应该占主要部分。
Problem 12221
这题是要我们证:\(\begin{aligned}\int_0 ^1 \frac{\ln(x^6+1)}{x^2+1}dx=\frac{\pi}{2}\ln(6)-3G\end{aligned}\),这里\(G\)是卡特兰常数\(\begin{aligned}G=\sum_{k=0}^\infin \frac{(-1)^k}{(2k+1)^2}\end{aligned}\)。
(证明来自于Roberto Tauraso)
首先依然是倒代换,令\(\begin{aligned}t=\frac{1}{x},dt=-\frac{1}{x^2}dx=-t^2 dx\end{aligned}\)就会有\(\begin{aligned}I&=\int _0^1 \frac{\ln(x^6+1)}{x^2+1}dx=\int_\infin ^1 \frac{\ln(x^6+1)-6\ln x}{\frac{x^2+1}{x^2}}(-\frac{1}{x^2} dx)\\&=\int _1^\infin \frac{\ln(x^6+1)}{x^2+1}dx-6\int_1^\infin \frac{\ln x}{x^2+1} dx \end{aligned}\)
接着分别取第一行和第二行的式子,就得到了
\(\begin{aligned}2I=\int_0 ^\infin \frac{\ln(x^6+1)}{x^2+1} dx-6\int _1 ^\infin \frac{\ln x}{x^2+1}dx\end{aligned}.\tag{1}\)
不妨记\(\begin{aligned}I_1=\int_0 ^\infin \frac{\ln(x^6+1)}{x^2+1}dx\end{aligned}\),\(\begin{aligned}I_2=\int_1 ^\infin \frac{\ln x}{x^2+1}dx\end{aligned}\)。
\(\begin{aligned}I=\frac{1}{2}I_1-3I_2\end{aligned}.\tag{2}\)
我查阅了一下相关资料,后面那个积分(不妨记为\(\begin{aligned}I_1\end{aligned}\))就是卡特兰常数的一个常见的应用:
依然做倒代换:
\(\begin{aligned}\int _1^\infin \frac{\ln x}{x^2+1}dx=\int _1 ^0 \frac{-\ln x}{\frac{x^2+1}{x^2}}(-\frac{1}{x^2}dx)=-\int_0^1 \frac{\ln x}{x^2+1}dx\end{aligned}\),然后是利用\(\begin{aligned}\frac{1}{x^2+1}dx=d(\arctan x)\end{aligned}\)就得到,\(\begin{aligned}I_2&=-\int_0^1 \ln (x) d(\arctan x)=-\arctan(x)\ln(x)|_0^1+\int_0^1 \frac{\arctan x}{x}dx=\int_0^1 \frac{\arctan(x)}{x}dx\\&=\int_0^1 \frac{1}{x}\Big(\int_0^x \frac{dt}{t^2+1}\Big) dx=\int_0^1 \frac{1}{x}[\int_0^x \sum_{n=0}^\infin (-t^2)^n dt]dx=\int_0^1\frac{1}{x}[\sum_{n=0}^\infin (-1)^{n} \frac{x^{2n+1}}{2n+1}]dx\\&=\sum_{n=0}^\infin \frac{(-1)^n}{2n+1} \int_0^1 x^{2n} dx=\sum_{n=0}^\infin \frac{(-1)n}{(2n+1)^2}=G.\end{aligned}\)
这里其实就是在做凑微分、倒代换以及一个arctan x的泰勒展开式子,就得到了卡特兰常数相关的一串恒等式:
\(\begin{aligned}G=\int_0^1 \frac{\arctan x}{x} dx=\int _1^\infin \frac{\ln x}{x^2+1} dx=-\int_0^1 \frac{\ln x}{x^2+1} dx\end{aligned}.\tag{3}\)
好了处理完后面这个(还算好处理的)东西,再回过头来处理前面的广义积分\(I_1\),代数基本定理的一个推论说,每个实系数多项式必定可以分解成一些一次因式,以及实系数不可约的二次因式的乘积,这里刚好又在对数里出现了高次多项式,于是就考虑先给\(x^6+1\)做因式分解:
\(\begin{aligned}x^6+1&=(x^2)^3+1=(x^2+1)(x^4-x^2+1)=(x^2+1)(x^4+2x^2+1-3x^2)\\&=(x^2+1)[(x^2+1)^2-(\sqrt 3 x)^2]=(x^2+1)(x^2+\sqrt 3 x+1)(x^2-\sqrt3 x+1).\end{aligned}\)
后面作者就开始算一个震惊我一下午的东西,他直接去考虑如何计算\(\begin{aligned}J(a)=\int_0 ^\infin \frac{\ln(x^2+ax+1)}{x^2+1}dx\end{aligned}.\)
做起来依然是用反正切处理分母:
\(\begin{aligned}J(a)&=\int_0 ^\infin \ln(x^2+ax+1)d(\arctan x)\xlongequal[x=\tan t]{t=\arctan x}\int_0^{\pi/2} \ln(\frac{1}{\cos ^2 x}+a\frac{\sin x}{\cos x}) dx\\&=\int_0 ^{\pi/2} \ln(1+\frac{a}{2}\sin 2x)dx-2\int_{0}^{\pi/2} \ln(\cos x) dx\end{aligned}\)
对于后面的部分,记为\(I_3=\int_0 ^{\pi/2} \ln(\cos x) dx\),利用正余弦的对称性有\(I_3=\int_0^{\pi/2} \ln(\sin x)dx\),于是\(\begin{aligned}I_3&=\frac{1}{2}\int_0^{\pi/2} \ln(\frac{\sin(2x)}{2})dx=\frac{1}{2}\cdot 2\cdot\int_0^{\pi/4} \ln(\sin(2x))dx-\frac{1}{2}\cdot \frac{\pi}{2}\cdot ln2\\&=\frac{1}{2}\int_0^{\pi/4} ln(\sin(2x))d(2x)-\frac{\pi}{4}\ln 2=\frac{1}{2}I_3-\frac{\pi}{4}\ln2.\end{aligned}\tag{4}\)
于是要求的\(\begin{aligned}I_3=-\frac{\pi}{2}\ln 2\end{aligned}.\)
前面一块也可以化成\(2\begin{aligned}\int_0^{\pi/4} \ln(1+\frac{a}{2}\sin(2x))\frac{1}{2}d(2x)=\int_0^{\pi/2} \ln(1+\frac{a}{2}\sin x)dx.\end{aligned}\)
代回去:
\(\begin{aligned}J(a)=\int_0^{\pi/2} \ln(1+\frac{a}{2}\sin x)dx+\pi\ln2\end{aligned}\),接着又是一个震惊一下午的操作:
\(\begin{aligned}J(a)+J(-a)=\int_0^{\pi/2} \ln(1-\frac{a^2}{4}\sin^2 x)+2\pi \ln2\end{aligned}.\)
为了方便还是把前面的积分写成\(A\),泰勒展开成关于\(\sin ^2 x\)的幂级数,然后交换次序,再用Wallis公式展开:
\(\begin{aligned}A&=-\int_0^{\pi/2}[\sum_{n=1}^\infin(\frac{a^2}{4})^n \frac{1}{n}\sin^{2n} x ]dx=-\frac{\pi}{2}\sum_{n=1}^\infin (\frac{a^2}{4})^n \frac{1}{n}\frac{(2n-1)!!}{(2n)!!}.\end{aligned}\tag{5}\)
接着用到广义二项式定理的一个情形:
\(\begin{aligned}\frac{1}{\sqrt{1+x}}=1+\sum_{n=1}^\infin (-1)^n \frac{(2n-1)!!}{(2n)!!} x^n\end{aligned}.\tag{6}\)
\(\tag{5}\) 式里则考虑怎么处理掉\(\frac{1}{n}\),依然是凑成积分:
\(\begin{aligned}A&=-\frac{\pi}{2}\sum_{n=1}^\infin \frac{(2n-1)!!}{4^n(2n)!!} \cdot 2\cdot \int_0 ^a x^{2n-1} dx=-\pi\int_0^a \frac{1}{x}\sum_{n=1}^\infin \frac{(2n-1)!!}{(2n)!!}(\frac{x^2}{4})^n dx\\&=-\pi\int_0^a \frac{1}{x}(\frac{1}{\sqrt{1-\frac{x^2}{4}}}-1) dx=-\pi\int_0^a \frac{1}{x} \frac{2-\sqrt{4-x^2}}{\sqrt{4-x^2}}dx=-\pi\int_0^a \frac{1}{x} \frac{x^2}{\sqrt{4-x^2}(2+\sqrt{4-x^2})}\\&=-\pi\int_0^a \frac{x}{\sqrt{4-x^2}(2+\sqrt{4-x^2})}dx=\pi\int_0^a\frac{d(2+\sqrt{4-x^2})}{2+\sqrt{4-x^2}}\\&=\pi\Big(\ln|2+\sqrt{4-a^2}|-\ln 4\Big)=\pi\ln \frac{1+\sqrt{1-\frac{a^2}{4}}}{2}.\end{aligned}\)
于是几番波折终于得到了:
\(\begin{aligned}J(a)+J(-a)=\pi\ln \frac{1+\sqrt{1-\frac{a^2}{4}}}{2}+2\pi \ln 2\end{aligned}\tag{7}\)
now we back to…最开始的要求的那一个:
\(\begin{aligned}\end{aligned}\)\(\begin{aligned}I=\frac{1}{2}I_1-3G=\frac{1}{2}[J(0)+J(\sqrt 3)+J(-\sqrt 3)]-3G\end{aligned}.\)
\(\begin{aligned}J(0)=\pi \ln 2\end{aligned}\),以及\(\begin{aligned}J(\sqrt 3)+J(-\sqrt 3)=\pi\ln \frac{3}{4}+2\pi \ln 2\end{aligned}.\)
就得到了\(\begin{aligned}I=\frac{\pi}{2}[\ln(\frac{3}{4}\times 8)]-3G=\frac{\pi}{2}\ln6-3G\end{aligned}.\)
\(Q.E.D.\)