异步通知
1.异步通知
在前面使用阻塞或者非阻塞的方式来读取驱动中按键值都是应用程序主动读取的,对于非阻塞方式来说还需要应用程序通过 poll 函数不断的轮询。最好的方式就是驱动程序能主动向应用程序发出通知,报告自己可以访问,然后应用程序在从驱动程序中读取或写入数据,类似于我们在裸机例程中讲解的中断。Linux 提供了异步通知这个机制来完成此功能
1.1 异步通知简介
中断是处理器提供的一种异步机制,我们配置好中断以后就可以让处理器去处理其他的事情了,当中断发生以后会触发我们事先设置好的中断服务函数,在中断服务函数中做具体的处理。比如我们在裸机篇里面编写的 GPIO 按键中断实验,我们通过按键去开关蜂鸣器,采用中断以后处理器就不需要时刻的去查看按键有没有被按下,因为按键按下以后会自动触发中断。同样的,Linux 应用程序可以通过阻塞或者非阻塞这两种方式来访问驱动设备,通过阻塞方式访问的话应用程序会处于休眠态,等待驱动设备可以使用,非阻塞方式的话会通过 poll 函数来不断的轮询,查看驱动设备文件是否可以使用。这两种方式都需要应用程序主动的去查询设备的使用情况,如果能提供一种类似中断的机制,当驱动程序可以访问的时候主动告诉应用程序那就最好了。
“信号”为此应运而生,信号类似于我们硬件上使用的“中断”,只不过信号是软件层次上的。算是在软件层次上对中断的一种模拟,驱动可以通过主动向应用程序发送信号的方式来报告自己可以访问了,应用程序获取到信号以后就可以从驱动设备中读取或者写入数据了。整个过程就相当于应用程序收到了驱动发送过来了的一个中断,然后应用程序去响应这个中断,在整个处理过程中应用程序并没有去查询驱动设备是否可以访问,一切都是由驱动设备自己告诉给应用程序的。
阻塞、非阻塞、异步通知,这三种是针对不同的场合提出来的不同的解决方法,没有优劣之分,在实际的工作和学习中,根据自己的实际需求选择合适的处理方法即可。
这些信号中,除了 SIGKILL(9)和 SIGSTOP(19)这两个信号不能被忽略外,其他的信号都可以忽略。这些信号就相当于中断号,不同的中断号代表了不同的中断,不同的中断所做的处理不同,因此,驱动程序可以通过向应用程序发送不同的信号来实现不同的功能。
我们使用中断的时候需要设置中断处理函数,同样的,如果要在应用程序中使用信号,那么就必须设置信号所使用的信号处理函数,在应用程序中使用 signal 函数来设置指定信号的处理函数,signal 函数原型如下所示
我们前面讲解的使用“kill -9 PID”杀死指定进程的方法就是向指定的进程(PID)发送SIGKILL 这个信号。当按下键盘上的 CTRL+C 组合键以后会向当前正在占用终端的应用程序发出 SIGINT 信号,SIGINT 信号默认的动作是关闭当前应用程序。这里我们修改一下 SIGINT 信号的默认处理函数,当按下 CTRL+C 组合键以后先在终端上打印出“SIGINT signal!”这行字符串,然后再关闭当前应用程序。新建 signaltest.c 文件,然后输入如下所示内容:
#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
void sigint_handler(void)
{
printf("\r\nSIGINT signal!\r\n");
exit(0);
}
int main()
{
signal(SIGINT, sigint_handler);
while(1);
return 0;
}
1.2 驱动中的信号处理
fasync_struct 结构体
首先我们需要在驱动程序中定义一个 fasync_struct 结构体指针变量,fasync_struct 结构体内容如下:
一般将 fasync_struct 结构体指针变量定义到设备结构体中,比如在上一章节的 imx6uirq_dev结构体中添加一个 fasync_struct 结构体指针变量。
fasync 函数
如果要使用异步通知,需要在设备驱动中实现 file_operations 操作集中的 fasync 函数,此函数格式如下所示:
int (*fasync) (int fd, struct file *filp, int on)
fasync 函数里面一般通过调用 fasync_helper 函数来初始化前面定义的 fasync_struct 结构体指针,fasync_helper 函数原型如下:
int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
fasync_helper 函数的前三个参数就是 fasync 函数的那三个参数,第四个参数就是要初始化的 fasync_struct 结构体指针变量。当应用程序通过“fcntl(fd, F_SETFL, flags | FASYNC)”改变fasync 标记的时候,驱动程序 file_operations 操作集中的 fasync 函数就会执行。
在关闭驱动文件的时候需要在 file_operations 操作集中的 release 函数中释放 fasync_struct,fasync_struct 的释放函数同样为 fasync_helper,release 函数参数参考实例如下:
kill_fasync 函数
当设备可以访问的时候,驱动程序需要向应用程序发出信号,相当于产生“中断”。kill_fasync函数负责发送指定的信号,kill_fasync 函数原型如下所示:
void kill_fasync(struct fasync_struct **fp, int sig, int band)
函数参数和返回值含义如下:
fp:要操作的 fasync_struct。
sig:要发送的信号。
band:可读时设置为 POLL_IN,可写时设置为 POLL_OUT。
返回值:无。
1.3 应用程序对异步通知的处理
应用程序对异步通知的处理包括以下三步:
- 注册信号处理函数
应用程序根据驱动程序所使用的信号来设置信号的处理函数,应用程序使用 signal 函数来设置信号的处理函数。前面已经详细的讲过了,这里就不细讲了。 - 将本应用程序的进程号告诉给内核
使用 fcntl(fd, F_SETOWN, getpid())将本应用程序的进程号告诉给内核。 - 开启异步通知
使用如下两行程序开启异步通知:
flags = fcntl(fd, F_GETFL); /* 获取当前的进程状态 */
fcntl(fd, F_SETFL, flags | FASYNC); /* 开启当前进程异步通知功能 */
重点就是通过 fcntl 函数设置进程状态为 FASYNC,经过这一步,驱动程序中的 fasync 函数就会执行。
2.驱动代码
#include <linux/types.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/ide.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/errno.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <asm/mach/map.h>
#include <linux/timer.h>
#include <linux/jiffies.h>
#include <linux/wait.h>
#include <linux/poll.h>
#include <linux/fcntl.h> /* 异步通知 */
#define IMX6UIRQ_CNT 1 /* 设备号个数 */
#define IMX6UIRQ_NAME "asyncnoyi" /* 名字 */
#define KEY0VALUE 0X01 /* KEY0 按键值 */
#define INVAKEY 0XFF /* 无效的按键值 */
#define KEY_NUM 1 /* 按键数量 */
/* 可能会有好多按键,通过结构体数组来描述按键 */
/* 中断 IO 描述结构体 */
struct irq_keydesc {
int gpio; /* gpio */
int irqnum; /* 中断号 */
unsigned char value; /* 按键对应的键值 */
char name[10]; /* 名字 */
irqreturn_t (*handler)(int, void *); /* 中断服务函数 */
};
/* irq设备结构体 */
struct imx6uirq_dev {
dev_t devid; /* 设备号 */
struct cdev cdev; /* 字符设备 */
struct class *class; /* 类 */
struct device *device; /* 设备 */
int major; /* 注设备号 */
int minor; /* 次设备号 */
struct device_node *nd; /* 设备节点 */
atomic_t keyvalue; /* 有效的按键键值 */
atomic_t releasekey; /* 标记是否完成一次完成的按键*/
struct timer_list timer; /* 定义一个定时器*/
struct irq_keydesc irqkeydesc[KEY_NUM]; /* 按键描述数组 */
unsigned char curkeynum; /* 当前的按键号 */
wait_queue_head_t r_wait; /* 定义一个(读)等待队列头 */
/* shaozheming 2022/02/10 */
struct fasync_struct *async_queue; /* 异步通知结构体 */
};
struct imx6uirq_dev irqDev; /* 定义LED结构体 */
/* @description : 中断服务函数,开启定时器,延时 10ms,
* 定时器用于按键消抖。
* 两个参数是中断处理函数的必须写法
* @param - irq : 中断号
* @param - dev_id : 设备结构。
* @return : 中断执行结果
*/
static irqreturn_t key0_handler(int irq, void *dev_id)
{
struct imx6uirq_dev *dev = (struct imx6uirq_dev *)dev_id;
/* 采用定时器削抖,如果再定时器时间内还是这个值,说明是真的按下了,在定时器中断中处理 */
/* 这里设置为0是简易处理,因为只有一个按键 */
/* 有其他按键要再建一个中断处理函数,并把curkeynum改成相应的按键值 */
/* 注意不能所有按键用一个中断函数,第一是一起按的时候会出错 */
/* 第二,无法用curkeynum判断使用的是第几个按键 */
dev->curkeynum = 0;
/* 传递给定时器的参数,注意要强转,在中断处理函数里面再转回来 */
dev->timer.data = (volatile long)dev_id;
/* mod_timer会启动定时器,第二个参数是要修改的超时时间 */
mod_timer(&dev->timer, jiffies + msecs_to_jiffies(10));
return IRQ_RETVAL(IRQ_HANDLED);
}
/* @description : 定时器服务函数,用于按键消抖,定时器到了以后
* 再次读取按键值,如果按键还是处于按下状态就表示按键有效。
* @param – arg : 设备结构变量
* @return : 无
*/
void timer_function(unsigned long arg)
{
unsigned char value;
unsigned char num;
struct irq_keydesc *keydesc;
struct imx6uirq_dev *dev = (struct imx6uirq_dev *)arg;
/* 因为只有一个按键,这里是0 */
num = dev->curkeynum;
keydesc = &dev->irqkeydesc[num];
value = gpio_get_value(keydesc->gpio); /* 读取 IO 值 */
if(value == 0){ /* 按下按键 */
atomic_set(&dev->keyvalue, keydesc->value);
}
else{ /* 按键松开 */
/* 这种情况是按下再松开的松开,使用keyValue加上releaseKey */
/* 没按下的话, releasekey一直为0*/
atomic_set(&dev->keyvalue, 0x80 | keydesc->value);
atomic_set(&dev->releasekey, 1); /* 标记松开按键 */
}
if(atomic_read(&dev->releasekey)) { /* 一次完整的按键过程 */
if(dev->async_queue)
/* 那么就通过 kill_fasync 函数发送 SIGIO 信号 */
kill_fasync(&dev->async_queue, SIGIO, POLL_IN);
}
#if 0
/* 中断处理之后可以唤醒进程 */
if(atomic_read(&dev->releasekey)) { /* 完成一次按键过程,没按下还是唤不醒 */
/* wake_up(&dev->r_wait); */
wake_up_interruptible(&dev->r_wait);
}
#endif
}
/*
* @description : 按键 IO 初始化
* @param : 无
* @return : 无
*/
static int keyio_init(void)
{
unsigned char i = 0;
int ret = 0;
/* 1.获取key节点 */
irqDev.nd = of_find_node_by_path("/key");
if (irqDev.nd== NULL){
printk("key node not find!\r\n");
return -EINVAL;
}
/* 对每个按键都提取 GPIO */
for (i = 0; i < KEY_NUM; i++) {
irqDev.irqkeydesc[i].gpio = of_get_named_gpio(irqDev.nd, "key-gpios", i);
if (irqDev.irqkeydesc[i].gpio < 0) {
printk("can't get key%d\r\n", i);
}
}
/* 初始化 key 所使用的 IO,并且设置成中断模式 */
for (i = 0; i < KEY_NUM; i++) {
/* 先对每一个IO命名 */
/* 先对命名清0 */
memset(irqDev.irqkeydesc[i].name, 0, sizeof(irqDev.irqkeydesc[i].name));
/* 给IO命名 */
sprintf(irqDev.irqkeydesc[i].name, "KEY%d", i);
/* 请求GPIO */
gpio_request(irqDev.irqkeydesc[i].gpio, irqDev.irqkeydesc[i].name);
/* 设置GPIO为输入 */
gpio_direction_input(irqDev.irqkeydesc[i].gpio);
/* 获取中断号,以下为两个方法,都可以获取到 */
/* 从interrupts属性里面获取 */
/* 注意i是根据设备树里面设置了多少个就是多少个,都会获取到 */
/* 下面的方法是通用的获取中断号的函数 */
irqDev.irqkeydesc[i].irqnum = irq_of_parse_and_map(irqDev.nd, i);
#if 0
/* 此方法是gpio获取中断号的方法 */
irqDev.irqkeydesc[i].irqnum = gpio_to_irq(irqDev.irqkeydesc[i].gpio);
#endif
printk("key%d:gpio=%d, irqnum=%d\r\n", i, irqDev.irqkeydesc[i].gpio,
irqDev.irqkeydesc[i].irqnum);
}
/* 2. 按键中断初始化 */
/* 设置中断处理函数和按键初始值 */
/* 因为只有一个key0.,所以这里也没用循环 */
irqDev.irqkeydesc[0].handler = key0_handler;
irqDev.irqkeydesc[0].value = KEY0VALUE;
/* 申请中断 */
for (i = 0; i < KEY_NUM; i++) {
/* request_irq参数
* 中断号,中断函数,中断触发类型,中断名字,传递给中断处理函数的参数(第二个),这里传的结构体
* */
ret = request_irq(irqDev.irqkeydesc[i].irqnum, irqDev.irqkeydesc[i].handler,
IRQF_TRIGGER_FALLING|IRQF_TRIGGER_RISING,
irqDev.irqkeydesc[i].name, &irqDev);
if(ret < 0){
printk("irq %d request failed!\r\n", irqDev.irqkeydesc[i].irqnum);
return -EFAULT;
}
}
/* 3. 创建定时器 */
init_timer(&irqDev.timer);
irqDev.timer.function = timer_function;
/* 注意下面不能让定时器运行,因为要按下按键之后再运行 */
/* 启动定时器通过mod_timer启动,通常在初始化阶段的定时器用的是add_timer */
/* 初始化等待队列头 */
init_waitqueue_head(&irqDev.r_wait);
return 0;
}
static int imx6uirq_open(struct inode *inode, struct file *filp)
{
filp->private_data = &irqDev;
return 0;
}
/*
* @description : fasync 函数,用于处理异步通知
* @param - fd : 文件描述符
* @param - filp : 要打开的设备文件(文件描述符)
* @param - on : 模式
* @return : 负数表示函数执行失败
*/
static int imx6uirq_fasync(int fd, struct file *filp, int on)
{
struct imx6uirq_dev *dev = (struct imx6uirq_dev *)filp->private_data;
return fasync_helper(fd, filp, on, &dev->async_queue);
}
static int imx6uirq_release(struct inode *inode, struct file *filp)
{
return imx6uirq_fasync(-1, filp, 0);
}
/*
* @description : 从设备读取数据
* @param – filp : 要打开的设备文件(文件描述符)
* @param – buf : 返回给用户空间的数据缓冲区
* @param - cnt : 要读取的数据长度
* @param – offt : 相对于文件首地址的偏移
* @return : 读取的字节数,如果为负值,表示读取失败
*/
static ssize_t imx6uirq_read(struct file *filp, char __user *buf, size_t cnt, loff_t *offt)
{
int ret = 0;
unsigned char keyvalue = 0; /* 按键值 */
unsigned char releasekey = 0; /* 标记是否一次完成 */
struct imx6uirq_dev *dev = (struct imx6uirq_dev *)filp->private_data;
/* 注意使用wait_event可以有同样的效果,但是不可以被信号打断了 */
#if 0
/* 加入等待队列,等待被唤醒,也就是有按键按下的时候 */
/* 此时应用函数里面虽然有while循环,但是CPU使用率会降很低 */
/* 注意如果没有唤醒,还是一直在这待着,可以(也可以不用)在中断中唤醒 */
ret = wait_event_interruptible(dev->r_wait, atomic_read(&dev->releasekey));
if(ret < 0){
/* 如果失败了,其实还是在挂起状态,需要重新切换到运行态 */
goto wait_error;
}
#endif
if(filp->f_flags & O_NONBLOCK){ /* 如果是非阻塞访问 */
if(atomic_read(&dev->releasekey) == 0) /* 没有按键按下 */
return -EAGAIN;
}else{ /* 阻塞访问 */
/* wait就是队列项,current就是当前进程 */
DECLARE_WAITQUEUE(wait, current); /* 定义一个等待队列 */
/* 如果按键没按下,就进入休眠状态 */
if(atomic_read(&dev->releasekey) == 0) { /* 没有按键按下 */
add_wait_queue(&dev->r_wait, &wait); /* 添加到等待队列头 */
__set_current_state(TASK_INTERRUPTIBLE); /* 设置任务状态为可被打断 */
/* 切换其他任务,切换之后任务休眠 */
schedule(); /* 进行一次任务切换 */
/* 没人搭理这个进程,就一直停留再上面了,之后唤醒才会往下走 */
/* 唤醒之后进入这里,说明唤醒之后任务回来了 */
if(signal_pending(current)) { /* 判断是否为信号引起的唤醒 */
ret = -ERESTARTSYS;
remove_wait_queue(&dev->r_wait, &wait); /* 将等待队列移除 */
goto wait_error;
}
__set_current_state(TASK_RUNNING); /*设置为运行状态 */
remove_wait_queue(&dev->r_wait, &wait); /*将等待队列移除 */
/* 继续下面的操作 */
}
}
keyvalue = atomic_read(&dev->keyvalue);
releasekey = atomic_read(&dev->releasekey);
if (releasekey) { /* 有按键按下 */
if (keyvalue & 0x80) {
keyvalue &= ~0x80; /* 因为中断中或了一个0x80,这里面去掉0x80 */
ret = copy_to_user(buf, &keyvalue, sizeof(keyvalue));
} else {
goto data_error;
}
/* 读完之后标志变成0 */
atomic_set(&dev->releasekey, 0); /* 按下标志清零 */
} else { /* 没有按下 */
goto data_error;
}
return 0;
wait_error:
set_current_state(TASK_RUNNING); /* 设置任务为运行态 */
return ret;
data_error:
return -EINVAL;
}
/*
* @description : poll 函数,用于处理非阻塞访问
* @param - filp : 要打开的设备文件(文件描述符)
* @param - wait : 等待列表(poll_table)
* @return : 设备或者资源状态,
*/
unsigned int imx6uirq_poll(struct file *filp, struct poll_table_struct *wait)
{
unsigned int mask = 0;
struct imx6uirq_dev *dev = (struct imx6uirq_dev *)filp->private_data;
poll_wait(filp, &dev->r_wait, wait);
if(atomic_read(&dev->releasekey)) { /* 按键按下 */
mask = POLLIN | POLLRDNORM; /* 返回 PLLIN */
}
return mask;
}
/* 字符设备操作集 */
static const struct file_operations imx6uirq_fops = {
.owner = THIS_MODULE,
.open = imx6uirq_open,
.release = imx6uirq_release,
.read = imx6uirq_read,
.poll = imx6uirq_poll,
.fasync = imx6uirq_fasync,
};
/* 模块入口函数 */
static int __init imx6uirq_init(void)
{
/* 定义一些所需变量 */
int ret = 0;
/* 1. 注册字符设备驱动 */
irqDev.major = 0;
if(irqDev.major) {
irqDev.devid = MKDEV(irqDev.major, 0);
ret = register_chrdev_region(irqDev.devid, IMX6UIRQ_CNT, IMX6UIRQ_NAME );
} else {
alloc_chrdev_region(&irqDev.devid, 0, IMX6UIRQ_CNT, IMX6UIRQ_NAME );
irqDev.major = MAJOR(irqDev.devid);
irqDev.minor = MINOR(irqDev.devid);
}
if(ret < 0){
goto fail_devid;
}
printk("Make devid success! \r\n");
printk("major = %d, minor = %d \r\n", irqDev.major, irqDev.minor);
/* 2. 初始化cdev */
irqDev.cdev.owner = THIS_MODULE;
cdev_init(&irqDev.cdev, &imx6uirq_fops);
ret = cdev_add(&irqDev.cdev, irqDev.devid, IMX6UIRQ_CNT);
if (ret < 0){
goto fail_cdev;
} else {
printk("Cdev add sucess! \r\n");
}
/* 3. 自动创建设备节点 */
irqDev.class = class_create(THIS_MODULE, IMX6UIRQ_NAME );
if(IS_ERR(irqDev.class)) {
ret = PTR_ERR(irqDev.class);
goto fail_class;
} else {
printk("Class create sucess! \r\n");
}
irqDev.device = device_create(irqDev.class, NULL, irqDev.devid, NULL, IMX6UIRQ_NAME );
if(IS_ERR(irqDev.device)) {
ret = PTR_ERR(irqDev.device);
goto fail_device;
} else {
printk("Device create sucess! \r\n");
}
/* 4.初始化按键 */
atomic_set(&irqDev.keyvalue, INVAKEY);
atomic_set(&irqDev.releasekey, 0);
keyio_init();
printk("irqDev init! \r\n");
return 0;
/* 错误处理 */
fail_device:
class_destroy(irqDev.class);
fail_class:
cdev_del(&irqDev.cdev);
fail_cdev:
unregister_chrdev_region(irqDev.devid, IMX6UIRQ_CNT);
fail_devid:
return ret;
}
/* 模块出口函数 */
static void __exit imx6uirq_exit(void)
{
unsigned int i = 0;
/* 删除定时器 */
del_timer_sync(&irqDev.timer);
/* 释放中断 */
for (i = 0; i < KEY_NUM; i++) {
free_irq(irqDev.irqkeydesc[i].irqnum, &irqDev);
}
/* 1. 释放设备号 */
cdev_del(&irqDev.cdev);
/* 2. 注销设备号 */
unregister_chrdev_region(irqDev.devid, IMX6UIRQ_CNT);
/* 3. 摧毁设备 */
device_destroy(irqDev.class, irqDev.devid);
/* 4.摧毁类 */
class_destroy(irqDev.class);
printk("irqDev exit! \r\n");
}
/* 模块入口和出口注册 */
module_init(imx6uirq_init);
module_exit(imx6uirq_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Shao Zheming");
3.应用代码
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include "linux/ioctl.h"
#include "poll.h"
#include "sys/select.h"
#include "sys/time.h"
#include "signal.h"
static int fd = 0;
/*
* SIGIO 信号处理函数
* @param - signum : 信号值
* @return : 无
*/
static void sigio_signal_func(int signum)
{
int err = 0;
unsigned int keyvalue = 0;
err = read(fd, &keyvalue, sizeof(keyvalue));
if(err < 0) {
/* 读取错误 */
} else {
printf("sigio signal! key value=%d\r\n", keyvalue);
}
}
/*
* @description : main 主程序
* @param - argc : argv 数组元素个数
* @param - argv : 具体参数
* @return : 0 成功;其他 失败
*/
int main(int argc, char *argv[])
{
if(argc != 2)
{
printf("Error Usage!\r\n");
return -1;
}
int flags = 0;
char *filename;
filename = argv[1];
fd = open(filename, O_RDWR); /* 设置成非阻塞打开 */
if(fd < 0)
{
printf("file %s open failed! \r\n", filename);
return -1;
}
/* 设置信号 SIGIO 的处理函数 */
signal(SIGIO, sigio_signal_func);
fcntl(fd, F_SETOWN, getpid()); /* 将当前进程的进程号告诉给内核 */
flags = fcntl(fd, F_GETFD); /* 获取当前的进程状态 */
fcntl(fd, F_SETFL, flags | FASYNC);/* 设置进程启用异步通知功能 */
while(1) {
sleep(2);
}
close(fd);
return 0;
}
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· winform 绘制太阳,地球,月球 运作规律