pytorch resnet实现

官方github上已经有了pytorch基础模型的实现,链接

但是其中一些模型,尤其是resnet,都是用函数生成的各个层,自己看起来是真的难受!

所以自己按照caffe的样子,写一个pytorch的resnet18模型,当然和1000分类模型不同,模型做了一些修改,输入48*48的3通道图片,输出7类。

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import torch.nn as nn
import torch.nn.functional as F
 
class ResNet18Model(nn.Module):
    def __init__(self):
        super().__init__()
 
        self.bn64_0 = nn.BatchNorm2d(64)
        self.bn64_1 = nn.BatchNorm2d(64)
        self.bn64_2 = nn.BatchNorm2d(64)
        self.bn64_3 = nn.BatchNorm2d(64)
        self.bn64_4 = nn.BatchNorm2d(64)
 
 
        self.bn128_0 = nn.BatchNorm2d(128)
        self.bn128_1 = nn.BatchNorm2d(128)
        self.bn128_2 = nn.BatchNorm2d(128)
        self.bn128_3 = nn.BatchNorm2d(128)
 
        self.bn256_0 = nn.BatchNorm2d(256)
        self.bn256_1 = nn.BatchNorm2d(256)
        self.bn256_2 = nn.BatchNorm2d(256)
        self.bn256_3 = nn.BatchNorm2d(256)
 
        self.bn512_0 = nn.BatchNorm2d(512)
        self.bn512_1 = nn.BatchNorm2d(512)
        self.bn512_2 = nn.BatchNorm2d(512)
        self.bn512_3 = nn.BatchNorm2d(512)
 
 
        self.shortcut_straight_0 = nn.Sequential()
        self.shortcut_straight_1 = nn.Sequential()
        self.shortcut_straight_2 = nn.Sequential()
        self.shortcut_straight_3 = nn.Sequential()
        self.shortcut_straight_4 = nn.Sequential()
 
 
        self.shortcut_conv_bn_64_128_0 = nn.Sequential(nn.Conv2d(64, 128, kernel_size=1, stride=2, bias=False),nn.BatchNorm2d(128))
 
        self.shortcut_conv_bn_128_256_0 = nn.Sequential(nn.Conv2d(128, 256, kernel_size=1, stride=2, bias=False),nn.BatchNorm2d(256))
 
        self.shortcut_conv_bn_256_512_0 = nn.Sequential(nn.Conv2d(256, 512, kernel_size=1, stride=2, bias=False),nn.BatchNorm2d(512))
 
 
        self.conv_w3_h3_in3_out64_s1_p1_0 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
 
        self.conv_w3_h3_in64_out64_s1_p1_0 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
        self.conv_w3_h3_in64_out64_s1_p1_1 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
        self.conv_w3_h3_in64_out64_s1_p1_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
        self.conv_w3_h3_in64_out64_s1_p1_3 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
 
 
        self.conv_w3_h3_in64_out128_s2_p1_0 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False)
 
        self.conv_w3_h3_in128_out128_s1_p1_0 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False)
        self.conv_w3_h3_in128_out128_s1_p1_1 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False)
        self.conv_w3_h3_in128_out128_s1_p1_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False)
 
 
        self.conv_w3_h3_in128_out256_s2_p1_0 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False)
 
        self.conv_w3_h3_in256_out256_s1_p1_0 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False)
        self.conv_w3_h3_in256_out256_s1_p1_1 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False)
        self.conv_w3_h3_in256_out256_s1_p1_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False)
 
 
        self.conv_w3_h3_in256_out512_s2_p1_0 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False)
 
        self.conv_w3_h3_in512_out512_s1_p1_0 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False)
        self.conv_w3_h3_in512_out512_s1_p1_1 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False)
        self.conv_w3_h3_in512_out512_s1_p1_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False)
 
 
        self.avg_pool_0 = nn.AdaptiveAvgPool2d((1, 1))
        self.fc_512_7_0 = nn.Linear(512, 7)
        self.dropout_0 = nn.Dropout(p=0.5)
 
 
 
 
    def forward(self, x):
 
        # 48*48*3
        t = self.conv_w3_h3_in3_out64_s1_p1_0(x) #48*48*64
        t = self.bn64_0(t)
        y1 = F.relu(t)
 
 
        t = self.conv_w3_h3_in64_out64_s1_p1_0(y1) #48*48*64
        t = self.bn64_1(t)
        y2 = F.relu(t)
 
        t = self.conv_w3_h3_in64_out64_s1_p1_1(y2) #48*48*64
        t = self.bn64_2(t)
        t += self.shortcut_straight_0(y1)
        y3 = F.relu(t)
 
 
        t = self.conv_w3_h3_in64_out64_s1_p1_2(y3) #48*48*64
        t = self.bn64_3(t)
        y4 = F.relu(t)
 
        t = self.conv_w3_h3_in64_out64_s1_p1_3(y4) #48*48*64
        t = self.bn64_4(t)
        t += self.shortcut_straight_1(y3)
        y5 = F.relu(t)
 
 
        t = self.conv_w3_h3_in64_out128_s2_p1_0(y5) #24*24*128
        t = self.bn128_0(t)
        y6 = F.relu(t)
 
        t = self.conv_w3_h3_in128_out128_s1_p1_0(y6) #24*24*128
        t = self.bn128_1(t)
        t += self.shortcut_conv_bn_64_128_0(y5)
        y7 = F.relu(t)
 
 
        t = self.conv_w3_h3_in128_out128_s1_p1_1(y7) #24*24*128
        t = self.bn128_2(t)
        y8 = F.relu(t)
 
        t = self.conv_w3_h3_in128_out128_s1_p1_2(y8) #24*24*128
        t = self.bn128_3(t)
        t += self.shortcut_straight_2(y7)
        y9 = F.relu(t)
 
 
        t = self.conv_w3_h3_in128_out256_s2_p1_0(y9) #12*12*256
        t = self.bn256_0(t)
        y10 = F.relu(t)
 
        t = self.conv_w3_h3_in256_out256_s1_p1_0(y10) #12*12*256
        t = self.bn256_1(t)
        t += self.shortcut_conv_bn_128_256_0(y9)
        y11 = F.relu(t)
 
 
        t = self.conv_w3_h3_in256_out256_s1_p1_1(y11) #12*12*256
        t = self.bn256_2(t)
        y12 = F.relu(t)
 
        t = self.conv_w3_h3_in256_out256_s1_p1_2(y12) #12*12*256
        t = self.bn256_3(t)
        t += self.shortcut_straight_3(y11)
        y13 = F.relu(t)
 
 
        t = self.conv_w3_h3_in256_out512_s2_p1_0(y13) #6*6*512
        t = self.bn512_0(t)
        y14 = F.relu(t)
 
        t = self.conv_w3_h3_in512_out512_s1_p1_0(y14) #6*6*512
        t = self.bn512_1(t)
        t += self.shortcut_conv_bn_256_512_0(y13)
        y15 = F.relu(t)
 
 
        t = self.conv_w3_h3_in512_out512_s1_p1_1(y15) #6*6*512
        t = self.bn512_2(t)
        y16 = F.relu(t)
 
        t = self.conv_w3_h3_in512_out512_s1_p1_2(y16) #6*6*512
        t = self.bn512_3(t)
        t += self.shortcut_straight_4(y15)
        y17 = F.relu(t)
 
 
        out = self.avg_pool_0(y17) #1*1*512    
        out = out.view(out.size(0), -1)
        out = self.dropout_0(out)
        out = self.fc_512_7_0(out)
 
        return out
 
 
 
if __name__ == '__main__':
    net = ResNet18Model()
    # print(net)
 
    import torch
    net_in = torch.rand(1, 3, 48, 48)
    net_out = net(net_in)
    print(net_out)
    print(net_out.size())

  

posted @   立冬以东  阅读(1627)  评论(0编辑  收藏  举报
编辑推荐:
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
阅读排行:
· 地球OL攻略 —— 某应届生求职总结
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 提示词工程——AI应用必不可少的技术
· .NET周刊【3月第1期 2025-03-02】
点击右上角即可分享
微信分享提示