Elasticsearch安装介绍

Elasticsearch概述

Elaticsearch,简称为es, es是一个开源的高扩展分布式全文检索引擎,它可以近乎实时的存储、检索数据;本身扩展性很好,可以扩展到上百台服务器,处理PB级别的数据。es也使用Java开发并使用Lucene作为其核心来实现所有索引和搜索的功能,但是它的目的是通过简单的RESTful API来隐藏Lucene的复杂性,从而让全文搜索变得简单。

Elasticsearch的适用场景

  1. 维基百科和百度百科,手机维基百科,全文检索,高亮,搜索推荐。

  2. The Guardian(国外新闻网站),类似搜狐新闻,用户行为日志(点击,浏览,收藏,评论)+社交网络数据(对某某新闻的相关看法),数据分析,给到每篇新闻文章的作者,让他知道他的文章的公众反馈(好,坏,热门,垃圾,鄙视,崇拜)。

  3. Stack Overflow(国外的程序异常讨论论坛),IT问题,程序的报错,提交上去,有人会跟你讨论和回答,全文检索,搜索相关问题和答案,程序报错了,就会将报错信息粘贴到里面去,搜索有没有对应的答案。

  4. GitHub(开源代码管理),搜索上千亿行代码。

  5. 电商网站,检索商品。

  6. 日志数据分析,logstash采集日志,ES进行复杂的数据分析(ELK技术,elasticsearch+logstash+kibana)

  7. 商品价格监控网站,用户设定某商品的价格阈值,当低于该阈值的时候,发送通知消息给用户,比如说订阅手机的监控,如果iphone的手机低于3000块钱,就通知我,我就去买

  8. BI系统,商业智能,Business Intelligence。比如说有个大型商场集团,BI,分析一下某某区域最近3年的用户消费金额的趋势以及用户群体的组成构成,产出相关的数张报表,**区,最近3年,每年消费金额呈现100%的增长,而且用户群体85%是高级白领,开一个新商场。ES执行数据分析和挖掘,Kibana进行数据可视化国内。

  9. 国内:站内搜索(电商,招聘,门户,等等),IT OA系统搜索(OA,CRM,ERP,等等),数据分析(ES热门的一个使用场景)。

ElasticSearch的特点

  1. 可以作为一个大型分布式集群(数百台服务器)技术,处理PB级数据,服务大公司;也可以运行在单机上,服务小公司。

  2. Elasticsearch不是什么新技术,主要是将全文检索、数据分析以及分布式技术,合并在了一起,才形成了独一无二的ES;lucene(全文检索),商用的数据分析软件(也是有的),分布式数据库(mycat)。

  3. 对用户而言,是开箱即用的,非常简单,作为中小型的应用,直接3分钟部署一下ES,就可以作为生产环境的系统来使用了,数据量不大,操作不是太复杂。

  4. 数据库的功能面对很多领域是不够用的(事务,还有各种联机事务型的操作);特殊的功能,比如全文检索,同义词处理,相关度排名,复杂数据分析,海量数据的近实时处理;Elasticsearch作为传统数据库的一个。

Elasticsearch简介

Elasticsearch是一个实时分布式搜索和分析引擎。它让你以前所未有的速度处理大数据成为可能。

它用于全文搜索、结构化搜索、分析以及将这三者混合使用: 维基百科使用Elasticsearch提供全文搜索并高亮关键字,以及输入实时搜索(search-asyou-type)和搜索纠错(did-you-mean)等搜索建议功能。

英国卫报使用Elasticsearch结合用户日志和社交网络数据提供给他们的编辑以实时的反馈,以便及时了解公众对新发表的文章的回应。

StackOverflow结合全文搜索与地理位置查询,以及more-like-this功能来找到相关的问题和答案。 Github使用Elasticsearch检索1300亿行的代码。 但是Elasticsearch不仅用于大型企业,它还让像DataDog以及Klout这样的创业公司将最初的想法变成可扩展的解决方案。

Elasticsearch可以在你的笔记本上运行,也可以在数以百计的服务器上处理PB级别的数据。 Elasticsearch是一个基于Apache Lucene(TM)的开源搜索引擎。无论在开源还是专有领域,Lucene可以被认为是迄今为止最先进、性能最好的、功能最全的搜索引擎库。

但是, Lucene只是一个库。 想要使用它,你必须使用ava来作为开发语言并将其直接集成到你的应用中,更糟糕的是,Lucene非常复杂,你需要深入了解检索的相关知识来理解它是如何工作的。

Elasticsearch也使用Java开发并使用Lucene作为其核心来实现所有索引和搜索的功能,但是它的目的是通过简单的RESTfulAPI来隐藏Lucene的复杂性,从而让全文搜索变得简单。

Solr简介

Solr是Apache下的一个顶级开源项目,采用Java开发,它是基于Lucene的全文搜索服务器。Solr提供了比Lucene更为丰富的查询语言,同时实现了可配置、可扩展,并对索引、搜索性能进行了优化

Solr可以独立运行,运行在Jetty、 Tomcat等这些Servlet容器中, Solr 索引的实现方法很简单,用POST方法向Solr服务器发送一个描述Field及其内容的XML文档,Solr根据XML文档添加、删除、更新索引。Solr 搜索只需要发送HTTP GET请求,然后对Solr返回XML、 json等 格式的查询结果进行解析,组织页面布局。Solr不提供构建UI的功能,Solr提供了一个管理界面,通过管理界面可以查询Solr的配置和运行情况。

solr是基于lucene开发企业级搜索服务器,实际上就是封装了lucene。

Solr是一个独立的企业级搜索应用服务器,它对外提供类似于Web-service的API接口。用户可以通过http请求,向搜索引擎服务器提交一定格式的文件,生成索引;也可以通过提出查找请求,并得到返回结果。

Lucene简介

Lucene是apache软件基金会4 jakarta项目组的一个子项目,是一个开放源代码的全文检索引擎工具包,但它不是一个完整的全文检索引擎,而是一个全文检索引擎的架构,提供了完整的查询引擎和索引引擎,部分文本分析引擎(英文与德文两种西方语言)。

Lucene的目的是为软件开发人员提供一个简单易用的工具包,以方便的在目标系统中实现全文检索的功能,或者是以此为基础建立起完整的全文检索引擎。Lucene是一套用于全文检索和搜寻的开源程式库,由Apache软件基金会支持和提供。Lucene提供了一个简单却强大的应用程式接口,能够做全文索引和搜寻。在Java开发环境里Lucene是一个成熟的免费开源工具。

就其本身而言,Lucene是当前以及最近几年最受欢迎的免费Java信息检索程序库。人们经常提到信息检索程序库,虽然与搜索引擎有关,但不应该将信息检索程序库与搜索引擎相混淆。

Lucene是一个全文检索引擎的架构。那什么是全文搜索引擎?

全文搜索引擎是名副其实的搜索引擎,国外具代表性的有Google、FastAlITheWeb、AltaVista、Inktomi、Teoma、 WiseNut等,国内著名的有百度( Baidu)。它们都是通过从互联网上提取的各个网站的信息(以网页文字为主)而建立的数据库中,检索与用户查询条件匹配的相关记录,然后按一定的排列顺序将结果返回给用户,因此他们是真正的搜索引擎。

从搜索结果来源的角度,全文搜索引擎又可细分为两种, 一种是拥有自己的检索程序( Indexer) , 俗称 “蜘蛛”(Spider)程序或"机器人”( Robot)程序,并自建网页数据库,搜索结果直接从自身的数据库中调用,如上面提到的7家引擎;另一种则是租用其他引擎的数据库,并按自定的格式排列搜索结果,如Lycos引擎。

ElasticSearch与Solr总结对比

  1. es基本是开箱即用(解压就可以用! ),非常简单。Solr安装略微复杂一丢丢!

  2. Solr利用Zookeeper进行分希式管理,而Elasticsearch自身带有分布式协调管理功能

  3. Solr支持更多格式的数据,比如JSON、XML、CSV,而Elasticsearch仅支持json文件格式。

  4. Solr官方提供的功能更多,而Elasticsearch本身更注重于核心功能,高级功能多有第三方插件提供,例如图形化界面需要kibana友好支撑

  5. Solr查询快,但更新索引时慢(即插入删除慢),用于电商等查询多的应用;

    • ES建立索引快(即查询慢),即实时性查询快,用于facebook新浪等搜索。

    • Solr是传统搜索应用的有力解决方案,但Elasticsearch更适用于新兴的实时搜索应用。

  6. Solr比较成熟,有一个更大,更成熟的用户、开发和贡献者社区,而Elasticsearch相对开发维护者较少,更新太快,学习使用成本较高。

     

    ElasticSearch安装

    环境要求:es使用java开发,使用lucene作为核心,需要配置好java环境!(jdk1.8以上)

    下载

    官网:https://www.elastic.co/products/elasticsearch

    镜像路径:https://mirrors.huaweicloud.com/logstash/?C=N&O=D

    1. 解压

    image-20220325130021121

    1. 熟悉目录

      bin 启动文件

      config 配置文件

      log4j2 日志配置文件

      jvm.options java 虚拟机相关的配置

      elasticsearch.yml elasticsearch 的配置文件 默认端口号 :9200

      lib 相关jar包

      logs 日志

      modules 功能模块

      plugins 插件

    2. 启动elasticsearch

      • bin 文件夹下 —> elasticsearch.bat 文件

        注意:9300是tcp通信端口,es集群之间使用tcp进行通信,9200是http协议端口。

      安装可视化界面ElasticSearch Head的插件

      需要前端基础,安装vue 配置基本环境

      1. 下载head插件:https://github.com/mobz/elasticsearch-head

        下载解压即可

      2. 启动

        npm install
        npm run start
      3. 链接测试发现,存在跨域问题: 配置 es

        elasticsearch.yml 文件最后配置

        http.cors.enabled:true
        htpp.cors.allow-origin:"*"
      4. 重启es服务器,然后再次链接

了解ELK

ELK是Elasticsearch、Logstash、Kibana三大开源框架首字母大写简称。市面上也被成为Elastic Stack。其中Elasticsearch是一 个基于Lucene、分布式、通过Restful方式进行交互的近实时搜索平台框架。像类似百度、谷歌这种大数据全文搜索弓|擎的场景都可以使用Elasticsearch作为底层支持框架,可见Elasticsearch提供的搜索能力确实强大,市面上很多时候我们简称Elasticsearch为es。 Logstash是ELK的中央数据流引擎,用于从不同目标(文件/数据存储/MQ )收集的不同格式数据,经过过滤后支持输出到不同目的地(文件/MQ/redis/elasticsearch/kafka等)。Kibana可以将elasticsearch的数据通过友好的页面展示出来,提供实时分析的功能。

步骤收集清洗数据——>搜索,存储——>Kibana

市面上很多开发只要提到ELK能够一致说出它是一个日志分析架构技术栈总称,但实际上ELK不仅仅适用于日志分析,它还可以支持其它任何数据分析和收集的场景,日志分析和收集只是更具有代表性。并非唯一性。

 

安装Kibana

Kibana是一个针对Elasticsearch的开源分析及可视化平台,用来搜索、查看交互存储在Elasticsearch索引中的数据。 使用Kibana,可以通过各种图表进行高级数据分析及展示。Kibana让海量数据更容易理解。它操作简单,基于浏览器的用户界面可以快速创建仪表板( dashboard )实时显示Elasticsearch查询动态。设置Kibana非常简单。无需编码或者额外的基础架构,几分钟内就可以完成Kibana安装并启动Elasticsearch索引监测。

官网:https://www.elastic.co/cn/kibana/

镜像路径:https://mirrors.huaweicloud.com/kibana/?C=N&O=D

kibana版本要和Es版本一致

启动测试:

  1. 解压文件目录

  2. 待完续。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
posted @   YongGL  阅读(59)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· DeepSeek “源神”启动!「GitHub 热点速览」
· 微软正式发布.NET 10 Preview 1:开启下一代开发框架新篇章
· C# 集成 DeepSeek 模型实现 AI 私有化(本地部署与 API 调用教程)
· DeepSeek R1 简明指南:架构、训练、本地部署及硬件要求
· NetPad:一个.NET开源、跨平台的C#编辑器
点击右上角即可分享
微信分享提示