数据分析
数据分析
什么是数据分析?
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。
数据分析经典案例
(一)啤酒与尿布
沃尔玛在对消费者购物行为分析时发现,男性顾客在购买婴儿尿片时,常常会顺便搭配几瓶啤酒来犒劳自己,于是尝试推出了将啤酒和尿布摆在一起的促销手段。没想到这个举措居然使尿布和啤酒的销量都大幅增加了。
(二)数据新闻让英国撤军
2010年10月23日《卫报》利用维基解密的数据做了一篇“数据新闻”。将伊拉克战争中所有的人员伤亡情况均标注于地图之上。地图上一个红点便代表一次死伤事件,鼠标点击红点后弹出的窗口则有详细的说明:伤亡人数、时间,造成伤亡的具体原因。密布的红点多达39万,显得格外触目惊心。一经刊出立即引起朝野震动,推动英国最终做出撤出驻伊拉克军队的决定。
(三)微软数据分析成功预测奥斯卡21项大奖
2013年,微软纽约研究院的经济学家大卫•罗斯柴尔德(David Rothschild)利用数据分析技术成功预测24个奥斯卡奖项中的19个,成为人们津津乐道的话题。后来,罗斯柴尔德再接再厉,成功预测第86届奥斯卡金像奖颁奖典礼24个奖项中的21个。
数据分析三驾马车
- 统计学
- 业务
- 算法与编程
通过三种技能贯穿数据分析思想,培养自己的业务需求分析能力与编程能力,解决具体行业场景的数据分析问题。
课程设计
总结后端知识体系,了解数据分析、人工智能与后端的关系。
课程体系设计。学习的重点。学习方法。
徐铭 xuming@tedu.cn 15201603213 251041263
使用python做数据分析的常用库
- numpy 基础数值算法
- scipy 科学计算
- matplotlib 数据可视化
- pandas 序列高级函数
numpy
numpy概述
- Numerical Python,数值的Python,补充了Python语言所欠缺的数值计算能力。
- Numpy是其它数据分析及机器学习库的底层库。
- Numpy完全标准C语言实现,运行效率充分优化。
- Numpy开源免费。
numpy历史
- 1995年,Numeric,Python语言数值计算扩充。
- 2001年,Scipy->Numarray,多维数组运算。
- 2005年,Numeric+Numarray->Numpy。
- 2006年,Numpy脱离Scipy成为独立的项目。
numpy的核心:多维数组
- 代码简洁:减少Python代码中的循环。
- 底层实现:厚内核(C)+薄接口(Python),保证性能。
numpy基础
ndarray数组
用np.ndarray类的对象表示n维数组
import numpy as np
ary = np.array([1, 2, 3, 4, 5, 6])
print(type(ary))
内存中的ndarray对象
元数据(metadata)
存储对目标数组的描述信息,如:ndim、dimensions、dtype、data等。
实际数据
完整的数组数据
将实际数据与元数据分开存放,一方面提高了内存空间的使用效率,另一方面减少对实际数据的访问频率,提高性能。
ndarray数组对象的特点
- Numpy数组是同质数组,即所有元素的数据类型必须相同
- Numpy数组的下标从0开始,最后一个元素的下标为数组长度减1
ndarray数组对象的创建
np.array(任何可被解释为Numpy数组的逻辑结构)
import numpy as np
a = np.array([1, 2, 3, 4, 5, 6])
print(a)
np.arange(起始值(0),终止值,步长(1))
import numpy as np
a = np.arange(0, 5, 1)
print(a)
b = np.arange(0, 10, 2)
print(b)
np.zeros(数组元素个数, dtype='类型')
import numpy as np
a = np.zeros(10)
print(a)
np.ones(数组元素个数, dtype='类型')
import numpy as np
a = np.ones(10)
print(a)
ndarray对象属性的基本操作
**数组的维度:**np.ndarray.shape
import numpy as np
ary = np.array([1, 2, 3, 4, 5, 6])
print(type(ary), ary, ary.shape)
#二维数组
ary = np.array([
[1,2,3,4],
[5,6,7,8]
])
print(type(ary), ary, ary.shape)
**元素的类型:**np.ndarray.dtype
import numpy as np
ary = np.array([1, 2, 3, 4, 5, 6])
print(type(ary), ary, ary.dtype)
#转换ary元素的类型
b = ary.astype(float)
print(type(b), b, b.dtype)
#转换ary元素的类型
c = ary.astype(str)
print(type(c), c, c.dtype)
**数组元素的个数:**np.ndarray.size
import numpy as np
ary = np.array([
[1,2,3,4],
[5,6,7,8]
])
#观察维度,size,len的区别
print(ary.shape, ary.size, len(ary))
数组元素索引(下标)
数组对象[..., 页号, 行号, 列号]
下标从0开始,到数组len-1结束。
import numpy as np
a = np.array([[[1, 2],
[3, 4]],
[[5, 6],
[7, 8]]])
print(a, a.shape)
print(a[0])
print(a[0][0])
print(a[0][0][0])
print(a[0, 0, 0])
for i in range(a.shape[0]):
for j in range(a.shape[1]):
for k in range(a.shape[2]):
print(a[i, j, k])
ndarray对象属性操作详解
Numpy的内部基本数据类型
类型名 | 类型表示符 |
---|---|
布尔型 | bool_ |
有符号整数型 | int8(-128~127) / int16 / int32 / int64 |
无符号整数型 | uint8(0~255) / uint16 / uint32 / uint64 |
浮点型 | float16 / float32 / float64 |
复数型 | complex64 / complex128 |
字串型 | str_,每个字符用32位Unicode编码表示 |
日期类型 | datetime64 |
自定义复合类型
# 自定义复合类型
import numpy as np
data=[
('zs', [90, 80, 85], 15),
('ls', [92, 81, 83], 16),
('ww', [95, 85, 95], 15)
]
#第一种设置dtype的方式
a = np.array(data, dtype='U3, 3int32, int32')
print(a)
print(a[0]['f0'], ":", a[1]['f1'])
print("=====================================")
#第二种设置dtype的方式
b = np.array(data, dtype=[('name', 'str_', 2),
('scores', 'int32', 3),
('age', 'int32', 1)])
print(b[0]['name'], ":", b[0]['scores'])
print("=====================================")
#第三种设置dtype的方式
c = np.array(data, dtype={'names': ['name', 'scores', 'ages'],
'formats': ['U3', '3int32', 'int32']})
print(c[0]['name'], ":", c[0]['scores'], ":", c.itemsize)
print("=====================================")
#第四种设置dtype的方式
d = np.array(data, dtype={'name': ('U3', 0),
'scores': ('3int32', 16),
'age': ('int32', 28)})
print(d[0]['names'], d[0]['scores'], d.itemsize)
print("=====================================")
#测试日期类型数组
f = np.array(['2011', '2012-01-01', '2013-01-01 01:01:01','2011-02-01'])
f = f.astype('M8[D]')
f = f.astype('i4')
print(f[3]-f[0])
f.astype('bool')
类型字符码
类型 | 字符码 |
---|---|
np.bool_ | ? |
np.int8/16/32/64 | i1 / i2 / i4 / i8 |
np.uint8/16/32/64 | u1 / u2 / u4 / u8 |
np.float/16/32/64 | f2 / f4 / f8 |
np.complex64/128 | c8 / c16 |
np.str_ | U |
np.datetime64 | M8[Y] M8[M] M8[D] M8[h] M8[m] M8[s] |
字节序前缀,用于多字节整数和字符串: </>/[=]分别表示小端/大端/硬件字节序。
类型字符码格式
<字节序前缀><维度><类型><字节数或字符数>
3i4 | 释义 |
---|---|
3i4 | 大端字节序,3个元素的一维数组,每个元素都是整型,每个整型元素占4个字节。 |
<(2,3)u8 | 小端字节序,6个元素2行3列的二维数组,每个元素都是无符号整型,每个无符号整型元素占8个字节。 |
U7 | 包含7个字符的Unicode字符串,每个字符占4个字节,采用默认字节序。 |
ndarray数组维度操作
视图变维(数据共享): reshape() 与 ravel()
import numpy as np
a = np.arange(1, 9)
print(a) # [1 2 3 4 5 6 7 8]
b = a.reshape(2, 4) #视图变维 : 变为2行4列的二维数组
print(b)
c = b.reshape(2, 2, 2) #视图变维 变为2页2行2列的三维数组
print(c)
d = c.ravel() #视图变维 变为1维数组
print(d)
**复制变维(数据独立):**flatten()
e = c.flatten()
print(e)
a += 10
print(a, e, sep='\n')
就地变维:直接改变原数组对象的维度,不返回新数组
a.shape = (2, 4)
print(a)
a.resize(2, 2, 2)
print(a)
ndarray数组索引操作
# 数组对象切片的参数设置与列表切面参数类似
# 步长+:默认切从首到尾
# 步长-:默认切从尾到首
# 数组对象[起始位置:终止位置:步长, ...]
# 默认位置步长:1
import numpy as np
a = np.arange(1, 10)
print(a) # 1 2 3 4 5 6 7 8 9
print(a[:3]) # 1 2 3
print(a[3:6]) # 4 5 6
print(a[6:]) # 7 8 9
print(a[::-1]) # 9 8 7 6 5 4 3 2 1
print(a[:-4:-1]) # 9 8 7
print(a[-4:-7:-1]) # 6 5 4
print(a[-7::-1]) # 3 2 1
print(a[::]) # 1 2 3 4 5 6 7 8 9
print(a[:]) # 1 2 3 4 5 6 7 8 9
print(a[::3]) # 1 4 7
print(a[1::3]) # 2 5 8
print(a[2::3]) # 3 6 9
多维数组的切片操作
import numpy as np
a = np.arange(1, 28)
a.resize(3,3,3)
print(a)
#切出1页
print(a[1, :, :])
#切出所有页的1行
print(a[:, 1, :])
#切出0页的1行1列
print(a[0, :, 1])
ndarray数组的掩码操作
import numpy as np
a = np.arange(1, 10)
mask = [True, False,True, False,True, False,True, False,True]
print(a[mask])
多维数组的组合与拆分
垂直方向操作:
import numpy as np
a = np.arange(1, 7).reshape(2, 3)
b = np.arange(7, 13).reshape(2, 3)
# 垂直方向完成组合操作,生成新数组
c = np.vstack((a, b))
# 垂直方向完成拆分操作,生成两个数组
d, e = np.vsplit(c, 2)
水平方向操作:
import numpy as np
a = np.arange(1, 7).reshape(2, 3)
b = np.arange(7, 13).reshape(2, 3)
# 水平方向完成组合操作,生成新数组
c = np.hstack((a, b))
# 水平方向完成拆分操作,生成两个数组
d, e = np.hsplit(c, 2)
深度方向操作:(3维)
import numpy as np
a = np.arange(1, 7).reshape(2, 3)
b = np.arange(7, 13).reshape(2, 3)
# 深度方向(3维)完成组合操作,生成新数组
i = np.dstack((a, b))
# 深度方向(3维)完成拆分操作,生成两个数组
k, l = np.dsplit(i, 2)
长度不等的数组组合:
import numpy as np
a = np.array([1,2,3,4,5])
b = np.array([1,2,3,4])
# 填充b数组使其长度与a相同
b = np.pad(b, pad_width=(0, 1), mode='constant', constant_values=-1)
print(b)
# 垂直方向完成组合操作,生成新数组
c = np.vstack((a, b))
print(c)
多维数组组合与拆分的相关函数:
# 通过axis作为关键字参数指定组合的方向,取值如下:
# 若待组合的数组都是二维数组:
# 0: 垂直方向组合
# 1: 水平方向组合
# 若待组合的数组都是三维数组:
# 0: 垂直方向组合
# 1: 水平方向组合
# 2: 深度方向组合
np.concatenate((a, b), axis=0)
# 通过给出的数组与要拆分的份数,按照某个方向进行拆分,axis的取值同上
np.split(c, 2, axis=0)
简单的一维数组组合方案
a = np.arange(1,9) #[1, 2, 3, 4, 5, 6, 7, 8]
b = np.arange(9,17) #[9,10,11,12,13,14,15,16]
#把两个数组摞在一起成两行
c = np.row_stack((a, b))
print(c)
#把两个数组组合在一起成两列
d = np.column_stack((a, b))
print(d)
ndarray类的其他属性
- shape - 维度
- dtype - 元素类型
- size - 元素数量
- ndim - 维数,len(shape)
- itemsize - 元素字节数
- nbytes - 总字节数 = size x itemsize
- real - 复数数组的实部数组
- imag - 复数数组的虚部数组
- T - 数组对象的转置视图
- flat - 扁平迭代器
import numpy as np
a = np.array([[1 + 1j, 2 + 4j, 3 + 7j],
[4 + 2j, 5 + 5j, 6 + 8j],
[7 + 3j, 8 + 6j, 9 + 9j]])
print(a.shape)
print(a.dtype)
print(a.ndim)
print(a.size)
print(a.itemsize)
print(a.nbytes)
print(a.real, a.imag, sep='\n')
print(a.T)
print([elem for elem in a.flat])
b = a.tolist()
print(b)