D3.js数据可视化(一)——绘制热图(heat map)
二维标量可视化
1. 实验名称
二维标量的可视化。
2. 实验目的
使用d3以及提供的NBA篮球上个赛季的数据(basketball statics.xlsx),绘制一个热图(heat map)。
3. 技术基础
Web, HTML, DOM, CSS, JavaScript, SVG。
核心技术为D3 —— Data-Driven Documents(数据驱动的文档)。数据来源于你,而文档就是基于Web的文档(或者网页),代表可以在浏览器中展现的一切,比如HTML,SVG。D3扮演的是一个驱动程序的角色,因为它联系着数据和文档。
4. 步骤
4.1 配置web服务器
使用windows集成软件包xxamp,下载后安装即可。XAMPP(Apache+MySQL+PHP+PERL,主要使用Apache)安装后,其安装目录中htdocs文件夹即为自己的项目文件存放地址。为使目录更清晰,再在htdocs文件夹中新建一个projects文件夹,把所有项目都放进projects文件夹。
4.2 下载安装D3
从http://d3js.org/ 下载d3源码,在projects文件夹中新建一个文件夹,叫做lab_1,在lab_1中新建一个文件夹,叫做d3,另外在lab_1中新建一个文本文档,命名为index.html。下载的d3源码d3.v3.js放入d3文件夹。
4.3 编写代码
index.html
<!DOCTYPE html> <meta charset="utf-8"> <html> <head> <style> rect.bordered { stroke: #A1A1A1; stroke-width:1px; } text.mono { font-size: 9pt; font-family: Consolas, courier; fill: #000; } text.axis-workweek { fill: #000; } text.axis-worktime { fill: #000; } </style> <script type="text/javascript" src="d3/d3.v3.js"></script> </head> <body> <div id="chart"></div> <!-- div定义一个大块 --> <div id="newdiv"></div> <!-- div定义一个大块 --> <script type="text/javascript"> var array_data = []; // 一句话定义了众多变量, 定义了块儿的位置、宽高、小格子的边长等等与布局有关的变量 var margin = { top: 50, right: 0, bottom: 100, left: 150 }, width = 960 - margin.left - margin.right, // 所有格子区域的宽度,即Heatmap的宽度 height = 1830 - margin.top - margin.bottom, gridSize = Math.floor(width / 24), // 求地板,即去掉小数部分,width分成24份 legendElementWidth = gridSize * 2, // 底下长条的长度,是格子边长的两倍 buckets = 9, // 一共9种颜色级别 colors = ["#ffffd9","#edf8b1","#c7e9b4","#7fcdbb","#41b6c4","#1d91c0","#225ea8","#253494","#081d58"], // alternatively colorbrewer.YlGnBu[9] // days = ["Mo", "Tu", "We", "Th", "Fr", "Sa", "Su"], //times = ["1a", "2a", "3a", "4a", "5a", "6a", "7a", "8a", "9a", "10a", "11a", "12a", "1p", "2p", "3p", "4p", "5p", "6p", "7p", "8p", "9p", "10p", "11p", "12p"]; tests = ["G","MIN","PTS","FGM","FGA","FGP","FTM","FTA","FTP","3PM","3PA","3PP","ORB","DRB","TRB","AST","STL","BLK","TO","PF"]; // 函数,读取 CSV 文件 d3.csv("ball_data.csv", //function(d) {}, function(error, data) {} ); // 每一行的数据 /*function(d) { return { day: +d.day, hour: +d.hour, value: +d.value }; },*/ function(error, data) { /*if(error){ console.log(error); } console.log(csvdata);*/ // colorScale:颜色级别 var colorScale = d3.scale.quantile() // 按分位数取值,可使每个区域内元素个数相等 .domain([0, buckets - 1, d3.max(data, function (d) { return d.G; })]) // 定义域 // domain([0, n, 数据的最大值]); .range(colors); // 值域:是颜色数组,函数的返回值是代表某种颜色的字符串 // 设置chart,svg var svg = d3.select("#chart").append("svg") // 选择“chart”(就是div),加入一个svg,设置属性跟div一样大 .attr("width", width + margin.left + margin.right) .attr("height", height + margin.top + margin.bottom) .append("g") // 在svg内加入一个g(group组),并设置元素g的显示位置 .attr("transform", "translate(" + margin.left + "," + margin.top + ")"); // 编辑姓名行 var dayLabels = svg.selectAll(".nameLabel") .data(data) .enter() // 为data中每一项创建一个".dayLabel" .append("text") // 为days中每一项创建一的".dayLabel"添加文本,下面全是设置文本的属性 .text(function (d, i) { return data[i].name; }) .attr("x", 0) .attr("y", function (d, i) { return i * gridSize; }) .style("text-anchor", "end") .attr("transform", "translate(-6," + gridSize / 1.5 + ")") .attr("class", function (d, i) { return ((i >= 0 && i <= 4) ? "nameLabel mono axis axis-workweek" : "nameLabel mono axis"); } ); // 编辑测试项行 var timeLabels = svg.selectAll(".testLabel") .data(tests) .enter().append("text") .text(function(d) { return d; }) .attr("x", function(d, i) { return i * gridSize; }) .attr("y", 0) .style("text-anchor", "middle") .attr("transform", "translate(" + gridSize / 2 + ", -6)") .attr("class", function(d, i) { return ((i >= 7 && i <= 16) ? "testLabel mono axis axis-worktime" : "testLabel mono axis"); } ); // 画出格子,暂不涂色,color[0] for (var i = 0; i < 50; i++){ array_data[i*20] = data[i].G; array_data[i*20+1] = data[i].MIN; array_data[i*20+2] = data[i].PTS; array_data[i*20+3] = data[i].FGM; array_data[i*20+4] = data[i].FGA; array_data[i*20+5] = data[i].FGP; array_data[i*20+6] = data[i].FTM; array_data[i*20+7] = data[i].FTA; array_data[i*20+8] = data[i].FTP; array_data[i*20+9] = data[i].P3PM; array_data[i*20+10] = data[i].P3PA; array_data[i*20+11] = data[i].P3PP; array_data[i*20+12] = data[i].ORB; array_data[i*20+13] = data[i].DRB; array_data[i*20+14] = data[i].TRB; array_data[i*20+15] = data[i].AST; array_data[i*20+16] = data[i].STL; array_data[i*20+17] = data[i].BLK; array_data[i*20+18] = data[i].TO; array_data[i*20+19] = data[i].PF; } var heatMap = svg.selectAll(".score") .data(array_data) .enter() // 为data中每一项创建一个".hour" .append("rect") .attr("x", function(d, i){ return (i % 20)*gridSize;}) .attr("y", function(d, i){ return parseInt(i / 20)*gridSize;}) .attr("rx", 6) .attr("ry", 6) .attr("class", "hour bordered") .attr("width", gridSize) .attr("height", gridSize) .style("fill", "#FFFFFF"); // duration(1000) 在1000ns也就是1s内将格子图上色 heatMap.transition().duration(1000) .style("fill", function(d) { return colorScale(d); }); // 鼠标停留显示value heatMap.append("title").text(function(d) { return d.G; }); // legend 是一个有7个组的什么东西,,, var legend = svg.selectAll(".legend") .data([0].concat(colorScale.quantiles()), function(d) { return d; }) // 由data获得的元素个数为7 .enter().append("g") .attr("class", "legend"); legend.append("rect") .attr("x", function(d, i) { return legendElementWidth * i; }) .attr("y", height) .attr("width", legendElementWidth) .attr("height", gridSize / 2) .style("fill", function(d, i) { return colors[i]; }); legend.append("text") .attr("class", "mono") .text(function(d) { return ">= "+Math.round(d); }) .attr("x", function(d, i) { return legendElementWidth * i; }) .attr("y", height + gridSize); }); </script> </body> </html>
数据:ball_data.csv
name,G,MIN,PTS,FGM,FGA,FGP,FTM,FTA,FTP,P3PM,P3PA,P3PP,ORB,DRB,TRB,AST,STL,BLK,TO,PF
Dwyane Wade ,79,38.6,30.2,10.8,22,0.491,7.5,9.8,0.765,1.1,3.5,0.317,1.1,3.9,5,7.5,2.2,1.3,3.4,2.3
LeBron James ,81,37.7,28.4,9.7,19.9,0.489,7.3,9.4,0.78,1.6,4.7,0.344,1.3,6.3,7.6,7.2,1.7,1.1,3,1.7
Kobe Bryant ,82,36.2,26.8,9.8,20.9,0.467,5.9,6.9,0.856,1.4,4.1,0.351,1.1,4.1,5.2,4.9,1.5,0.5,2.6,2.3
Dirk Nowitzki ,81,37.7,25.9,9.6,20,0.479,6,6.7,0.89,0.8,2.1,0.359,1.1,7.3,8.4,2.4,0.8,0.8,1.9,2.2
Danny Granger ,67,36.2,25.8,8.5,19.1,0.447,6,6.9,0.878,2.7,6.7,0.404,0.7,4.4,5.1,2.7,1,1.4,2.5,3.1
Kevin Durant ,74,39,25.3,8.9,18.8,0.476,6.1,7.1,0.863,1.3,3.1,0.422,1,5.5,6.5,2.8,1.3,0.7,3,1.8
Kevin Martin ,51,38.2,24.6,6.7,15.9,0.42,9,10.3,0.867,2.3,5.4,0.415,0.6,3,3.6,2.7,1.2,0.2,2.9,2.3
Al Jefferson ,50,36.6,23.1,9.7,19.5,0.497,3.7,5,0.738,0,0.1,0,3.4,7.5,11,1.6,0.8,1.7,1.8,2.8
Chris Paul ,78,38.5,22.8,8.1,16.1,0.503,5.8,6.7,0.868,0.8,2.3,0.364,0.9,4.7,5.5,11,2.8,0.1,3,2.7
Carmelo Anthony ,66,34.5,22.8,8.1,18.3,0.443,5.6,7.1,0.793,1,2.6,0.371,1.6,5.2,6.8,3.4,1.1,0.4,3,3
Chris Bosh ,77,38.1,22.7,8,16.4,0.487,6.5,8,0.817,0.2,0.6,0.245,2.8,7.2,10,2.5,0.9,1,2.3,2.5
Brandon Roy ,78,37.2,22.6,8.1,16.9,0.48,5.3,6.5,0.824,1.1,2.8,0.377,1.3,3.4,4.7,5.1,1.1,0.3,1.9,1.6
Antawn Jamison ,81,38.2,22.2,8.3,17.8,0.468,4.2,5.6,0.754,1.4,3.9,0.351,2.4,6.5,8.9,1.9,1.2,0.3,1.5,2.7
Tony Parker ,72,34.1,22,8.9,17.5,0.506,3.9,5,0.782,0.3,0.9,0.292,0.4,2.7,3.1,6.9,0.9,0.1,2.6,1.5
Amare Stoudemire ,53,36.8,21.4,7.6,14.1,0.539,6.1,7.3,0.835,0.1,0.1,0.429,2.2,5.9,8.1,2,0.9,1.1,2.8,3.1
Joe Johnson ,79,39.5,21.4,7.8,18,0.437,3.8,4.6,0.826,1.9,5.2,0.36,0.8,3.6,4.4,5.8,1.1,0.2,2.5,2.2
Devin Harris ,69,36.1,21.3,6.6,15.1,0.438,7.2,8.8,0.82,0.9,3.2,0.291,0.4,2.9,3.3,6.9,1.7,0.2,3.1,2.4
Michael Redd ,33,36.4,21.2,7.5,16.6,0.455,4,4.9,0.814,2.1,5.8,0.366,0.7,2.5,3.2,2.7,1.1,0.1,1.6,1.4
David West ,76,39.3,21,8,17,0.472,4.8,5.5,0.884,0.1,0.3,0.24,2.1,6.4,8.5,2.3,0.6,0.9,2.1,2.7
Zachary Randolph ,50,35.1,20.8,8.3,17.5,0.475,3.6,4.9,0.734,0.6,1.9,0.33,3.1,6.9,10.1,2.1,0.9,0.3,2.3,2.7
Caron Butler ,67,38.6,20.8,7.3,16.2,0.453,5.1,6,0.858,1,3.1,0.31,1.8,4.4,6.2,4.3,1.6,0.3,3.1,2.5
Vince Carter ,80,36.8,20.8,7.4,16.8,0.437,4.2,5.1,0.817,1.9,4.9,0.385,0.9,4.2,5.1,4.7,1,0.5,2.1,2.9
Stephen Jackson ,59,39.7,20.7,7,16.9,0.414,5,6,0.826,1.7,5.2,0.338,1.2,3.9,5.1,6.5,1.5,0.5,3.9,2.6
Ben Gordon ,82,36.6,20.7,7.3,16,0.455,4,4.7,0.864,2.1,5.1,0.41,0.6,2.8,3.5,3.4,0.9,0.3,2.4,2.2
Dwight Howard ,79,35.7,20.6,7.1,12.4,0.572,6.4,10.7,0.594,0,0,0,4.3,9.6,13.8,1.4,1,2.9,3,3.4
Paul Pierce ,81,37.4,20.5,6.7,14.6,0.457,5.7,6.8,0.83,1.5,3.8,0.391,0.7,5,5.6,3.6,1,0.3,2.8,2.7
Al Harrington ,73,34.9,20.1,7.3,16.6,0.439,3.2,4,0.793,2.3,6.4,0.364,1.4,4.9,6.2,1.4,1.2,0.3,2.2,3.1
Jamal Crawford ,65,38.1,19.7,6.4,15.7,0.41,4.6,5.3,0.872,2.2,6.1,0.36,0.4,2.6,3,4.4,0.9,0.2,2.3,1.4
Yao Ming ,77,33.6,19.7,7.4,13.4,0.548,4.9,5.7,0.866,0,0,1,2.6,7.2,9.9,1.8,0.4,1.9,3,3.3
Richard Jefferson ,82,35.9,19.6,6.5,14.9,0.439,5.1,6.3,0.805,1.4,3.6,0.397,0.7,3.9,4.6,2.4,0.8,0.2,2,3.1
Jason Terry ,74,33.6,19.6,7.3,15.8,0.463,2.7,3,0.88,2.3,6.2,0.366,0.5,1.9,2.4,3.4,1.3,0.3,1.6,1.9
Deron Williams ,68,36.9,19.4,6.8,14.5,0.471,4.8,5.6,0.849,1,3.3,0.31,0.4,2.5,2.9,10.7,1.1,0.3,3.4,2
Tim Duncan ,75,33.7,19.3,7.4,14.8,0.504,4.5,6.4,0.692,0,0,0,2.7,8,10.7,3.5,0.5,1.7,2.2,2.3
Monta Ellis ,25,35.6,19,7.8,17.2,0.451,3.1,3.8,0.83,0.3,1,0.308,0.6,3.8,4.3,3.7,1.6,0.3,2.7,2.7
Rudy Gay ,79,37.3,18.9,7.2,16,0.453,3.3,4.4,0.767,1.1,3.1,0.351,1.4,4.2,5.5,1.7,1.2,0.7,2.6,2.8
Pau Gasol ,81,37.1,18.9,7.3,12.9,0.567,4.2,5.4,0.781,0,0,0.5,3.2,6.4,9.6,3.5,0.6,1,1.9,2.1
Andre Iguodala ,82,39.8,18.8,6.6,14,0.473,4.6,6.4,0.724,1,3.2,0.307,1.1,4.6,5.7,5.3,1.6,0.4,2.7,1.9
Corey Maggette ,51,31.1,18.6,5.7,12.4,0.461,6.7,8.1,0.824,0.5,1.9,0.253,1,4.6,5.5,1.8,0.9,0.2,2.4,3.8
O.J. Mayo ,82,38,18.5,6.9,15.6,0.438,3,3.4,0.879,1.8,4.6,0.384,0.7,3.1,3.8,3.2,1.1,0.2,2.8,2.5
John Salmons ,79,37.5,18.3,6.5,13.8,0.472,3.6,4.4,0.83,1.6,3.8,0.417,0.7,3.5,4.2,3.2,1.1,0.3,2.1,2.3
Richard Hamilton ,67,34,18.3,7,15.6,0.447,3.3,3.9,0.848,1,2.8,0.368,0.7,2.4,3.1,4.4,0.6,0.1,2,2.6
Ray Allen ,79,36.3,18.2,6.3,13.2,0.48,3,3.2,0.952,2.5,6.2,0.409,0.8,2.7,3.5,2.8,0.9,0.2,1.7,2
LaMarcus Aldridge ,81,37.1,18.1,7.4,15.3,0.484,3.2,4.1,0.781,0.1,0.3,0.25,2.9,4.6,7.5,1.9,1,1,1.5,2.6
Josh Howard ,52,31.9,18,6.8,15.1,0.451,3.3,4.2,0.782,1.1,3.2,0.345,1.1,3.9,5.1,1.6,1.1,0.6,1.7,2.6
Maurice Williams ,81,35,17.8,6.5,13.9,0.467,2.6,2.8,0.912,2.3,5.2,0.436,0.6,2.9,3.4,4.1,0.9,0.1,2.2,2.7
Shaquille O'neal ,75,30.1,17.8,6.8,11.2,0.609,4.1,6.9,0.595,0,0,0,2.5,5.9,8.4,1.7,0.7,1.4,2.2,3.4
Rashard Lewis ,79,36.2,17.7,6.1,13.8,0.439,2.8,3.4,0.836,2.8,7,0.397,1.2,4.6,5.7,2.6,1,0.6,2,2.5
Chauncey Billups ,79,35.3,17.7,5.2,12.4,0.418,5.3,5.8,0.913,2.1,5,0.408,0.4,2.6,3,6.4,1.2,0.2,2.2,2
Allen Iverson ,57,36.7,17.5,6.1,14.6,0.417,4.8,6.1,0.781,0.5,1.7,0.283,0.5,2.5,3,5,1.5,0.1,2.6,1.5
Nate Robinson ,74,29.9,17.2,6.1,13.9,0.437,3.4,4,0.841,1.7,5.2,0.325,1.3,2.6,3.9,4.1,1.3,0.1,1.9,2.8
5. 可视化效果(部分截图,原图太大)