tsne、umap可视化简单例子
import numpy as np
from sklearn.manifold import TSNE
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import umap
import torch
X=torch.load('embeddings.pt') # (19783, 16)
y = np.load('labels.npy')
# reduced_x = TSNE().fit_transform(X)
# plt.figure(figsize=(8, 8))
# sc = plt.scatter(reduced_x[:,0], reduced_x[:,1],c=y)#,cmap='Spectral')#, lw=0, s=40)
# plt.axis('off')
# plt.savefig('tsne-generated.png', dpi=120)
# reduced_x = PCA(n_components=2).fit_transform(X)
# plt.figure(figsize=(8, 8))
# sc = plt.scatter(reduced_x[:,0], reduced_x[:,1],c=y)#,cmap='Spectral')#, lw=0, s=40)
# plt.axis('off')
# plt.savefig('pca-generated.png', dpi=120)
# reduced_x = PCA(n_components=4).fit_transform(X)
# reduced_x = TSNE().fit_transform(reduced_x)
# plt.figure(figsize=(8, 8))
# sc = plt.scatter(reduced_x[:,0], reduced_x[:,1],c=y)#,cmap='Spectral')#, lw=0, s=40)
# plt.axis('off')
# plt.savefig('pca-tsne-generated.png', dpi=120)
reduced_x = PCA(n_components=4).fit_transform(X)
model=umap.UMAP(n_components=2)
reduced_x=model.fit_transform(reduced_x)
plt.figure(figsize=(8, 8))
sc = plt.scatter(reduced_x[:,0], reduced_x[:,1],c=y)#,cmap='Spectral')#, lw=0, s=40)
plt.axis('off')
plt.savefig('umap-generated.png', dpi=120)
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· winform 绘制太阳,地球,月球 运作规律
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人