Data Cleaning(百度百科)

Data Cleaning(百度百科)

数据清洗是指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。与问卷审核不同,录入后的数据清理一般是由计算机而不是人工完成。

基本概念

数据清洗(Data cleaning)– 对数据进行重新审查和校验的过程,目的在于删除重复信息、纠正存在的错误,并提供数据一致性。

数据清洗从名字上也看的出就是把“脏”的“洗掉”,指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。因为数据仓库中的数据是面向某一主题的数据的集合,这些数据从多个业务系统中抽取而来而且包含历史数据,这样就避免不了有的数据是错误数据、有的数据相互之间有冲突,这些错误的或有冲突的数据显然是我们不想要的,称为“脏数据”。我们要按照一定的规则把“脏数据”“洗掉”,这就是数据清洗。而数据清洗的任务是过滤那些不符合要求的数据,将过滤的结果交给业务主管部门,确认是否过滤掉还是由业务单位修正之后再进行抽取。不符合要求的数据主要是有不完整的数据、错误的数据、重复的数据三大类。数据清洗是与问卷审核不同,录入后的数据清理一般是由计算机而不是人工完成

一致性检查

一致性检查(consistency check)是根据每个变量的合理取值范围和相互关系,检查数据是否合乎要求,发现超出正常范围、逻辑上不合理或者相互矛盾的数据。例如,用1-7级量表测量的变量出现了0值,体重出现了负数,都应视为超出正常值域范围。SPSS、SAS、和Excel等计算机软件都能够根据定义的取值范围,自动识别每个超出范围的变量值。具有逻辑上不一致性的答案可能以多种形式出现:例如,许多调查对象说自己开车上班,又报告没有汽车;或者调查对象报告自己是某品牌的重度购买者和使用者,但同时又在熟悉程度量表上给了很低的分值。发现不一致时,要列出问卷序号、记录序号、变量名称、错误类别等,便于进一步核对和纠正。

无效值和缺失值的处理

由于调查、编码和录入误差,数据中可能存在一些无效值和缺失值,需要给予适当的处理。常用的处理方法有:估算,整例删除,变量删除和成对删除。

估算(estimation)。最简单的办法就是用某个变量的样本均值中位数众数代替无效值和缺失值。这种办法简单,但没有充分考虑数据中已有的信息,误差可能较大。另一种办法就是根据调查对象对其他问题的答案,通过变量之间的相关分析或逻辑推论进行估计。例如,某一产品的拥有情况可能与家庭收入有关,可以根据调查对象的家庭收入推算拥有这一产品的可能性。

整例删除(casewise deletion)是剔除含有缺失值的样本。由于很多问卷都可能存在缺失值,这种做法的结果可能导致有效样本量大大减少,无法充分利用已经收集到的数据。因此,只适合关键变量缺失,或者含有无效值或缺失值的样本比重很小的情况。

变量删除(variable deletion)。如果某一变量的无效值和缺失值很多,而且该变量对于所研究的问题不是特别重要,则可以考虑将该变量删除。这种做法减少了供分析用的变量数目,但没有改变样本量。

成对删除(pairwise deletion)是用一个特殊码(通常是9、99、999等)代表无效值和缺失值,同时保留数据集中的全部变量和样本。但是,在具体计算时只采用有完整答案的样本,因而不同的分析因涉及的变量不同,其有效样本量也会有所不同。这是一种保守的处理方法,最大限度地保留了数据集中的可用信息。

采用不同的处理方法可能对分析结果产生影响,尤其是当缺失值的出现并非随机且变量之间明显相关时。因此,在调查中应当尽量避免出现无效值和缺失值,保证数据的完整性

数据清洗原理

数据清洗原理:利用有关技术如数理统计数据挖掘或预定义的清理规则将脏数据转化为满足数据质量要求的数据。

主要类型

残缺数据

这一类数据主要是一些应该有的信息缺失,如供应商的名称、分公司的名称、客户的区域信息缺失、业务系统中主表与明细表不能匹配等。对于这一类数据过滤出来,按缺失的内容分别写入不同Excel文件向客户提交,要求在规定的时间内补全。补全后才写入数据仓库

错误数据

这一类错误产生的原因是业务系统不够健全,在接收输入后没有进行判断直接写入后台数据库造成的,比如数值数据输成全角数字字符、字符串数据后面有一个回车操作、日期格式不正确、日期越界等。这一类数据也要分类,对于类似于全角字符、数据前后有不可见字符的问题,只能通过写SQL语句的方式找出来,然后要求客户在业务系统修正之后抽取。日期格式不正确的或者是日期越界的这一类错误会导致ETL运行失败,这一类错误需要去业务系统数据库SQL的方式挑出来,交给业务主管部门要求限期修正,修正之后再抽取。

重复数据

对于这一类数据——特别是维表中会出现这种情况——将重复数据记录的所有字段导出来,让客户确认并整理。

数据清洗是一个反复的过程,不可能在几天内完成,只有不断的发现问题,解决问题。对于是否过滤,是否修正一般要求客户确认,对于过滤掉的数据,写入Excel文件或者将过滤数据写入数据表,在ETL开发的初期可以每天向业务单位发送过滤数据的邮件,促使他们尽快地修正错误,同时也可以做为将来验证数据的依据。数据清洗需要注意的是不要将有用的数据过滤掉,对于每个过滤规则认真进行验证,并要用户确认。

数据清洗方法

一般来说,数据清理是将数据库精简以除去重复记录,并使剩余部分转换成标准可接收格式的过程。数据清理标准模型是将数据输入到数据清理处理器,通过一系列步骤“ 清理”数据,然后以期望的格式输出清理过的数据(如上图所示)。数据清理从数据的准确性、完整性、一致性、惟一性、适时性、有效性几个方面来处理数据的丢失值、越界值、不一致代码、重复数据等问题。

数据清理一般针对具体应用,因而难以归纳统一的方法和步骤,但是根据数据不同可以给出相应的数据清理方法。

1.解决不完整数据( 即值缺失)的方法

大多数情况下,缺失的值必须手工填入( 即手工清理)。当然,某些缺失值可以从本数据源或其它数据源推导出来,这就可以用平均值、最大值、最小值或更为复杂的概率估计代替缺失的值,从而达到清理的目的。

2.错误值的检测及解决方法

用统计分析的方法识别可能的错误值或异常值,如偏差分析、识别不遵守分布或回归方程的值,也可以用简单规则库( 常识性规则、业务特定规则等)检查数据值,或使用不同属性间的约束、外部的数据来检测和清理数据。

3.重复记录的检测及消除方法

数据库中属性值相同的记录被认为是重复记录,通过判断记录间的属性值是否相等来检测记录是否相等,相等的记录合并为一条记录(即合并/清除)。合并/清除是消重的基本方法。

4.不一致性( 数据源内部及数据源之间)的检测及解决方法

从多数据源集成的数据可能有语义冲突,可定义完整性约束用于检测不一致性,也可通过分析数据发现联系,从而使得数据保持一致。目前开发的数据清理工具大致可分为三类。

数据迁移工具允许指定简单的转换规则,如:将字符串gender替换成sex。sex公司的PrismWarehouse是一个流行的工具,就属于这类。

数据清洗工具使用领域特有的知识( 如,邮政地址)对数据作清洗。它们通常采用语法分析和模糊匹配技术完成对多数据源数据的清理。某些工具可以指明源的“ 相对清洁程度”。工具Integrity和Trillum属于这一类。

数据审计工具可以通过扫描数据发现规律和联系。因此,这类工具可以看作是数据挖掘工具的变形

常用数据清洗方法

数据清洗是将重复、多余的数据筛选清除,将缺失的数据补充完整,将错误的数据纠正或者删除,最后整理成为我们可以进一步加工、使用的数据。

所谓的数据清洗,也就是ETL处理,包含抽取Extract、转换Transform、加载load这三大法宝。在大数据挖掘过程中,面对的至少是G级别的数据量,包括用户基本数据、行为数据、交易数据、资金流数据以及第三方的数据等等。选择正确的方式来清洗特征数据极为重要,除了让你能够事半功倍,还至少能够保证在方案上是可行的。

数据清洗的一般步骤:分析数据、缺失值处理、异常值处理、去重处理、噪音数据处理。在大数据生态圈,有很多来源的数据ETL工具,但是对于公司内部来说,稳定性、安全性和成本都是必须考虑的。

对于数据值缺失的处理,通常使用的方法有下面几种:

1、删除缺失值

当样本数很多的时候,并且出现缺失值的样本在整个的样本的比例相对较小,这种情况下,我们可以使用最简单有效的方法处理缺失值的情况。那就是将出现有缺失值的样本直接丢弃。这是一种很常用的策略。

2、均值填补法

根据缺失值的属性相关系数最大的那个属性把数据分成几个组,然后分别计算每个组的均值,把这些均值放入到缺失的数值里面就可以了。

3、热卡填补法

对于一个包含缺失值的变量,热卡填充法的做法是:在数据库中找到一个与它最相似的对象,然后用这个相似对象的值来进行填充。不同的问题可能会选用不同的标准来对相似进行判定。最常见的是使用相关系数矩阵来确定哪个变量(如变量Y)与缺失值所在变量(如变量X)最相关。然后把所有变量按Y的取值大小进行排序。那么变量X的缺失值就可以用排在缺失值前的那个个案的数据来代替了。

还有类似于最近距离决定填补法、回归填补法、多重填补方法、K-最近邻法、有序最近邻法、基于贝叶斯的方法等。

异常值通常被称为“离群点”,对于异常值的处理,通常使用的方法有下面几种:

1、简单的统计分析

拿到数据后可以对数据进行一个简单的描述性统计分析,譬如最大最小值可以用来判断这个变量的取值是否超过了合理的范围,如客户的年龄为-20岁或200岁,显然是不合常理的,为异常值。

2、3∂原则

如果数据服从正态分布,在3∂原则下,异常值为一组测定值中与平均值的偏差超过3倍标准差的值。如果数据服从正态分布,距离平均值3∂之外的值出现的概率为P(|x-u| > 3∂) <= 0.003,属于极个别的小概率事件。如果数据不服从正态分布,也可以用远离平均值的多少倍标准差来描述。

3、箱型图分析

箱型图提供了识别异常值的一个标准:如果一个值小于QL01.5IQR或大于OU-1.5IQR的值,则被称为异常值。QL为下四分位数,表示全部观察值中有四分之一的数据取值比它小;QU为上四分位数,表示全部观察值中有四分之一的数据取值比它大;IQR为四分位数间距,是上四分位数QU与下四分位数QL的差值,包含了全部观察值的一半。箱型图判断异常值的方法以四分位数和四分位距为基础,四分位数具有鲁棒性:25%的数据可以变得任意远并且不会干扰四分位数,所以异常值不能对这个标准施加影响。因此箱型图识别异常值比较客观,在识别异常值时有一定的优越性。

4、基于模型检测

首先建立一个数据模型,异常是那些同模型不能完美拟合的对象;如果模型是簇的集合,则异常是不显著属于任何簇的对象;在使用回归模型时,异常是相对远离预测值的对象

优缺点:1.有坚实的统计学理论基础,当存在充分的数据和所用的检验类型的知识时,这些检验可能非常有效;2.对于多元数据,可用的选择少一些,并且对于高维数据,这些检测可能性很差。

5、基于距离

通常可以在对象之间定义邻近性度量,异常对象是那些远离其他对象的对象

优缺点:1.简单;2.缺点:基于邻近度的方法需要O(m2)时间,大数据集不适用;3.该方法对参数的选择也是敏感的;4.不能处理具有不同密度区域的数据集,因为它使用全局阈值,不能考虑这种密度的变化。

6、基于密度

当一个点的局部密度显著低于它的大部分近邻时才将其分类为离群点。适合非均匀分布的数据。

优缺点:1.给出了对象是离群点的定量度量,并且即使数据具有不同的区域也能够很好的处理;2.与基于距离的方法一样,这些方法必然具有O(m2)的时间复杂度。对于低维数据使用特定的数据结构可以达到O(mlogm);3.参数选择困难。虽然算法通过观察不同的k值,取得最大离群点得分来处理该问题,但是,仍然需要选择这些值的上下界。

7、基于聚类:

基于聚类的离群点:一个对象是基于聚类的离群点,如果该对象不强属于任何簇。离群点对初始聚类的影响:如果通过聚类检测离群点,则由于离群点影响聚类,存在一个问题:结构是否有效。为了处理该问题,可以使用如下方法:对象聚类,删除离群点,对象再次聚类(这个不能保证产生最优结果)。

优缺点:1.基于线性和接近线性复杂度(k均值)的聚类技术来发现离群点可能是高度有效的;2.簇的定义通常是离群点的补,因此可能同时发现簇和离群点;3.产生的离群点集和它们的得分可能非常依赖所用的簇的个数和数据中离群点的存在性;4.聚类算法产生的簇的质量对该算法产生的离群点的质量影响非常大。

噪音,是被测量变量的随机误差或方差。对于噪音的处理,通常有下面的两种方法:

1、分箱法

分箱方法通过考察数据的“近邻”(即,周围的值)来光滑有序数据值。这些有序的值被分布到一些“桶”或箱中。由于分箱方法考察近邻的值,因此它进行局部光滑。

用箱均值光滑:箱中每一个值被箱中的平均值替换。

用箱中位数平滑:箱中的每一个值被箱中的中位数替换。

用箱边界平滑:箱中的最大和最小值同样被视为边界。箱中的每一个值被最近的边界值替换。

一般而言,宽度越大,光滑效果越明显。箱也可以是等宽的,其中每个箱值的区间范围是个常量。分箱也可以作为一种离散化技术使用.

2、回归法

可以用一个函数拟合数据来光滑数据。线性回归涉及找出拟合两个属性(或变量)的“最佳”直线,使得一个属性能够预测另一个。多线性回归是线性回归的扩展,它涉及多于两个属性,并且数据拟合到一个多维面。使用回归,找出适合数据的数学方程式,能够帮助消除噪声。

————————————————
版权声明:本文为CSDN博主「w97531」的原创文章,遵循CC 4.0 by-sa版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/w97531/article/details/81947376

posted @ 2020-07-10 00:43  Theseus‘Ship  阅读(1064)  评论(0编辑  收藏  举报
Live2D