一、实验目的

  1. 了解一般非线性方程的求根是比较复杂的事情:要讨论(或知道)它有无实根,有多少实根;知道求近似根常用的几种方法,每种方法的特点是什么。

  2. 用通过二分法(区间半分法)、不动点(也Picard)迭代法及Newton迭代(切线)法求其它非线性方程的根,并尽可能估计误差。

二、实验原理

    

 

 三、实验程序

    

 

 四、实验内容

   1. 用二分法求方程x3-3x-1=0在的所有根.要求每个根的误差小于0.001.

   提示与要求: (1) 利用精度找到迭代次数;

           (2) 由f(x)=3(x2-1)可取隔根区间[-2,-1].[-1,1].[1,2]);

           (3) 用程序求各隔根区间内的根.

 2. 用不动点迭代求: (1)x3+2x2+10x-20=0的所有根.

           或: (2)9x2-sinx-1=0在[0,1]上的一个根.

 3. 用Newton迭代法求解下列之一,准确到10-5:

   (1) x3-x-1=0的所有根;

   (2) ex+2-x+2cosx-6=0位于[0,2]上的根.

 

 五、实验程序

    • 二分法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
文件代码:
function y = f(x)
y=x^3-3*x-1;
end
 
程序代码:
function Bipart(a0,b0,tol)
%a0为左区间,b0为右区间,tol为区间误差限
a=a0;b=b0;
m=ceil(log((b-a)/tol)/log(2));
for k=1:m
    p=(a+b)/2;
    if f(p)*f(b)<0
        a=p;
    else
        b=p;
    end
end
disp(['经过二分法求得的跟为:x=',num2str((a+b)/2,'%.6f')])
disp(['共经过',num2str(k),'次计算'])
 
命令窗口:
Bipart(-2,-1, 0.001)
Bipart(-1, 1, 0.001)
Bipart (1,2, 0.001)

 运行结果:

     

 

    • 不动点法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
文件代为:
function y = f(x)
y=9*x^2-sin(x)-1;
end
 
程序代码:
function Budongdian(x0,tol,m)
%x0为初始值,tol为误差容限,m为最大迭代次数
syms x
F(x)=sqrt(sin(x)+1)/3;
m=m;
text='';
x=[];
x(1)=x0;
for k=1:m
   x(k+1)=F(x(k));
   if (abs(x(k+1)-x(k))<=tol)==1
       text='迭代成功';
       disp(text);
       disp(['经过不动点迭代法求得的跟为:x=',num2str(x(k+1),'%.7f')]);
       disp(['共经过',num2str(k),'次计算'])
       break
   end
end
if isempty(text)==1
    disp('Method failed')
end
 
命令窗口:
Budongdian(1, 0.00001, 100)

   运行结果:

  

 

    • 牛顿迭代法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
文件代码:
function y = f(x)
y=exp(x)+2^(-x)+2*cos(x)-6;
end
 
程序代码:
function Newton_gen(x0,tol,m)
%x0为初始值,tol为误差容限,m为最大迭代次数
syms x
F(x)=x-f(x)/diff(f(x));
m=m;
text='';
x=[];
x(1)=x0;
for k=1:m
   x(k+1)=F(x(k));
   if (abs(x(k+1)-x(k))<=tol)==1
       text='迭代成功';
       disp(text);
       disp(['经过Newton迭代法求得的跟为:x=',num2str(x(k+1),'%.7f')]);
       disp(['共经过',num2str(k),'次计算'])
       break
   end
end
if isempty(text)==1
    disp('Method failed')
end
 
命令窗口:
Newton_ .gen(2, 0.00001, 100)

  运行结果:

   

另解:

 • 二分法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
定义函数:
function Bipart_2(a0,b0,tol,Tol)
%a0为左区间,b0为右区间,tol为区间误差限,Tol为f误差限
a=a0;b=b0;
m=ceil(log((b-a)/tol)/log(2));
for k=1:m
    p=(a+b)/2;
    if f(p)*f(b)<0
        a=p;
    else
        b=p;
    end
    if abs(f((a+b)/2))<Tol
        break;
    end
end
disp(['经过二分法求得的跟为:x=',num2str((a+b)/2,'%.6f')])
disp(['共经过',num2str(k),'次计算'])
     
命令窗口:
Bipart. .2(-1, 1,0.001,0.1)
Bipart_ .2(-1, 1, 0.001, 0.000001)

  运行结果:

   

 

• 不动点法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
定义函数:
function [x,k]=budong(fun,x0,tol,m)
for k=1:m
    x=fun(x0);
    if abs(x-x0)<tol
 break;
end
x0=x;
end
x=vpa(x,8);
 
function t=fun(x1)
syms x;
f=9*x.*x-sin(x)-1;
s=subs(diff(f,x),x,x1);
x=x1;
f=9*x.*x-sin(x)-1;
t=x-f/s;
 
命令行窗口输入:
[x,k]=budong(@fun,0.5,1e-5,100)

 运行结果:

     

 posted on   ぺあ紫泪°冰封ヤ  阅读(4558)  评论(1编辑  收藏  举报
编辑推荐:
· 深入理解 Mybatis 分库分表执行原理
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
· .NET 9 new features-C#13新的锁类型和语义
阅读排行:
· Sdcb Chats 技术博客:数据库 ID 选型的曲折之路 - 从 Guid 到自增 ID,再到
· 语音处理 开源项目 EchoSharp
· 《HelloGitHub》第 106 期
· Spring AI + Ollama 实现 deepseek-r1 的API服务和调用
· 使用 Dify + LLM 构建精确任务处理应用
Live2D
欢迎阅读『数值分析实验之非线性方程求根(MATLAB实现)』
点击右上角即可分享
微信分享提示

喜欢请打赏

扫描二维码打赏

了解更多