VOJ1049 送给圣诞夜的礼品 【矩阵经典4】

任意门:https://vijos.org/p/1049

描述

当小精灵们把贺卡都书写好了之后。礼品准备部的小精灵们已经把所有的礼品都制作好了。可是由于精神消耗的缘故,他们所做的礼品的质量越来越小,也就是说越来越不让圣诞老人很满意。可是这又是没有办法的事情。

于是圣诞老人把礼品准备部的小精灵们聚集起来,说明了自己的看法:“现在你们有n个礼品,其质量也就是降序排列的。那么为了使得这个礼品序列保持平均,不像现在这样很有规律的降序,我这里有一个列表。”
“列表共有m行,这m行都称作操作(不是序列),每一行有n个数字,这些数字互不相同而且每个数字都在1到n之间。一开始,礼品的序列就是现在礼品所处的位置,也就是说,一开始礼品的序列就是1、2、3、4……n;那么然后,我们看列表的第一行操作,设这一行操作的第i个数字为a[i],那么就把原来序列中的第a[i]个礼物放到现在这个序列的第i的位置上,然后组成新的礼物序列。然后,看列表的第二行操作……、第三行操作……一直到最后一行操作,重复上面的操作。当最后一行的操作结束,组成了的序列又按照第一行来操作,然后第二行操作……第三行操作……一直循环下去,直到一共操作了k行为止。最后生成的这个序列就是我们最终礼品送给孩子们的序列了。大家明白了吗?”
“明白了!”
等圣诞老人一个微笑走后,大家却开始忙碌了。因为m值可能很大很大,而小精灵们的操作速度有限。所以可能在圣诞老人去送礼物之前完成不了这个任务。让他们很是恼火……

格式

输入格式

第一行三个数,n,m和k。

接下来m行,每行n个数。

输出格式

一行,一共n个数,表示最终的礼品序列。n个数之间用一个空格隔开,行尾没有空格,需要回车。

样例1

样例输入1

7 5 8
6 1 3 7 5 2 4
3 2 4 5 6 7 1
7 1 3 4 5 2 6
5 6 7 3 1 2 4
2 7 3 4 6 1 5

样例输出1

2 4 6 3 5 1 7

限制

各个测试点1s

提示

1<=n<=100;1<=m<=10;1<=k<=2^31-1。

对于50%的数据,保证k<=500。这些数据每个数据点8分,其他的数据每个数据点12分。

 

题意概括:

依次给出对序列的 M 个 置换操作,按顺序做 K 次置换,输出最后的序列(初始序列为 从 1 到 N 的升序);

解题思路:

转换为矩阵的初等行变换,注意左乘!注意左乘!注意左乘!

 

AC code:

  1 #include <cstdio>
  2 #include <iostream>
  3 #include <algorithm>
  4 #include <cstring>
  5 #include <cmath>
  6 #define LL long long
  7 using namespace std;
  8 const int MAXN = 101;
  9 const int MAXM = 11;
 10 int N, M;
 11 struct mat
 12 {
 13     int m[MAXN][MAXN];
 14 }base[MAXM];
 15 
 16 mat muti(mat a, mat b)
 17 {
 18     mat res;
 19     memset(res.m, 0, sizeof(res.m));
 20 //    for(int i = 1; i <= N; i++) res.m[i][i] = 1;
 21 
 22     for(int i = 1; i <= N; i++)
 23     for(int j = 1; j <= N; j++){
 24         if(a.m[i][j]){
 25             for(int k = 1; k <= N; k++)
 26                 res.m[i][k] = res.m[i][k] + a.m[i][j]*b.m[j][k];
 27         }
 28     }
 29     return res;
 30 }
 31 
 32 mat qpow(mat a, int n)
 33 {
 34     mat res;
 35     memset(res.m, 0, sizeof(res.m));
 36     for(int i = 1; i <= N; i++)
 37         res.m[i][i] = 1;
 38 
 39     while(n){
 40         if(n&1) res = muti(res, a);
 41         n>>=1;
 42         a = muti(a, a);
 43     }
 44     return res;
 45 }
 46 
 47 int main()
 48 {
 49     int K, x;
 50     mat tmp;
 51     scanf("%d%d%d", &N, &M, &K);
 52     memset(tmp.m, 0, sizeof(tmp));
 53     for(int i = 1; i <= N; i++) tmp.m[i][i] = 1;
 54 
 55     for(int i = 1; i <= M; i++){
 56         memset(base[i].m, 0, sizeof(base[i].m));
 57         for(int k = 1; k <= N; k++){
 58             scanf("%d", &x);
 59             base[i].m[k][x] = 1;
 60         }
 61         //see see
 62 //        for(int ii = 1; ii <= N; ii++){
 63 //            for(int jj = 1; jj <= N; jj++){
 64 //                printf("%d ", base[i].m[ii][jj]);
 65 //            }
 66 //            puts("");
 67 //        }
 68 
 69         tmp = muti(base[i], tmp);
 70     }
 71     int tt = K/M;
 72     tmp = qpow(tmp, tt);
 73 
 74     mat ans;
 75     memset(ans.m, 0, sizeof(ans.m));
 76     for(int i = 1; i <= N; i++){
 77         ans.m[i][1] = i;
 78     }
 79     ans = muti(tmp, ans);
 80 
 81     //see see
 82 //        for(int ii = 1; ii <= N; ii++){
 83 //            for(int jj = 1; jj <= N; jj++){
 84 //                printf("%d ", ans.m[ii][jj]);
 85 //            }
 86 //            puts("");
 87 //        }
 88 
 89     tt = K%M;
 90     for(int k = 1; k <= tt; k++){
 91         ans = muti(base[k], ans);
 92     }
 93 
 94 //    mat ans;
 95 //    memset(ans.m, 0, sizeof(ans.m));
 96 //    for(int i = 1; i <= N; i++){
 97 //        ans.m[i][1] = i;
 98 //    }
 99 //    ans = muti(tmp, ans);
100 
101     for(int i = 1; i < N; i++){
102         printf("%d ", ans.m[i][1]);
103     }
104     printf("%d\n", ans.m[N][1]);
105 
106     return 0;
107 }
View Code

 

posted @ 2018-11-08 22:54  莜莫  阅读(219)  评论(0编辑  收藏  举报