tensorflow训练代码
from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf mnist = input_data.read_data_sets("MNIST_data/",one_hot = True) sess = tf.InteractiveSession() def weight_Variable(shape): initial = tf.truncated_normal(shape,stddev = 0.1) return tf.Variable(initial) def bias_Variable(shape): initial = tf.constant(0.1,shape = shape) return tf.Variable(initial) def conv2d(input,filter): return tf.nn.conv2d(input,filter,strides = [1,1,1,1],padding = 'SAME') def max_pool_2x2(input): return tf.nn.max_pool(input,[1,2,2,1],[1,2,2,1],padding = 'SAME') x = tf.placeholder(tf.float32,[None,784]) y = tf.placeholder(tf.float32,[None,10]) x_image = tf.reshape(x,[-1,28,28,1]) w_conv1 = weight_Variable([5,5,1,32]) b_conv1 = bias_Variable([32]) h_conv1 = tf.nn.relu(conv2d(x_image,w_conv1)+b_conv1) h_pool1 = max_pool_2x2(h_conv1) w_conv2 = weight_Variable([5,5,32,64]) b_conv2 = bias_Variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1,w_conv2)+b_conv2) h_pool2 = max_pool_2x2(h_conv2) w_fc1 = weight_Variable([7*7*64,1024]) b_fc1 = bias_Variable([1024]) h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,w_fc1)+b_fc1) keep_prob = tf.placeholder(tf.float32) h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob) w_fc2 = weight_Variable([1024,10]) b_fc2 = bias_Variable([10]) y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop,w_fc2)+b_fc2) cross_entropy = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_conv),reduction_indices = [1])) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv,1),tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) tf.global_variables_initializer().run() for i in range(20000): batch = mnist.train.next_batch(50) if i%100 == 0: train_accuracy = accuracy.eval(feed_dict = {x:batch[0],y:batch[1],keep_prob:1.0}) print('step %d,training accuracy %g'%(i,train_accuracy)) train_step.run(feed_dict = {x:batch[0],y:batch[1],keep_prob:0.5}) print('test accuary %g'%accuracy.eval(feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0}))