hdu 1003 简单的动态规划 Max Sum
Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 109964 Accepted Submission(s): 25381
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6
#include <iostream> #include<stdio.h> #include<math.h> #define MAX 100000 #define MIN -99999999999 using namespace std; int main() { int T,n,a[100010],ma,s,r,l,f,i,k; scanf("%d",&T); for(k=1;k<=T;k++) { scanf("%d",&n); ma=MIN; s=0; l=r=f=0; for(i=0;i<n;i++) { scanf("%d",&a[i]); s=s+a[i]; if(s>ma) { ma=s; l=f; r=i; } if(s<0) { s=0; f=i+1; } } printf("Case %d:\n",k); printf("%d %d %d\n",ma,l+1,r+1); if(k!=T) printf("\n"); } return 0; }