排序查询算法(一)

冒泡排序

# coding:utf-8

def bubble_sort(alist):
    """冒泡排序"""
    nums = len(alist) - 1  # 要执行的次数
    while nums:
        for i in range(nums):
            if alist[i] > alist[i+1]:
                alist[i], alist[i+1] = alist[i+1], alist[i]
        nums -= 1

    return alist


if __name__ == "__main__":
    b = bubble_sort([1, 3, 7, 2, 8, 9, 4, 5, 0, 6])
    print(b)

另一种方法

# coding:utf-8

def bubble_sort(alist):
    """冒泡排序"""
    nums = len(alist)
    count = 0  # 记录是否有进行数据交换
    for j in range(nums-1):  # 规定要执行的次数
        for i in range(0, nums-1-j):  # 规定每次执行比较的个数
            if alist[i] > alist[i+1]:
                alist[i], alist[i+1] = alist[i+1], alist[i]
                count += 1
        if count == 0:  # 说明该序列是有序的序列,不必进行后面的比较,直接返回
            return alist

    return alist


if __name__ == "__main__":
    b = bubble_sort([1, 3, 7, 2, 8, 9, 4, 5, 0, 6])
    print(b)

时间复杂度

  • 最优时间复杂度:O(n) (表示遍历一次发现没有任何可以交换的元素,排序结束。)
  • 最坏时间复杂度:O(n2)
  • 稳定性:稳定

改进:当传进来的顺序表是有序的时候

# coding:utf-8


def bubble_sort(alist):
    """冒泡排序"""
    nums = len(alist)
    count = 0  # 记录是否有进行数据交换
    for j in range(nums-1):  # 规定要执行的次数
        for i in range(0, nums-1-j):  # 规定每次执行比较的个数
            if alist[i] > alist[i+1]:
                alist[i], alist[i+1] = alist[i+1], alist[i]
                count += 1
        if count == 0:  # 说明该序列是有序的序列,不必进行后面的比较,直接返回
            return alist

    return alist


if __name__ == "__main__":
    b = bubble_sort([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
    print(b)

选择排序

# coding:utf-8

def select_sort(alist):
    """选择排序"""
    n = len(alist)
    for j in range(n-1):  # 外层循环代表执行多少次
        min_index = j  # j: 0 ~ n-2 共n-1个数字
        for i in range(j, n):  # 内层循环表示每次从哪开始
            if alist[min_index] > alist[i]:
                min_index = i
        alist[j], alist[min_index] = alist[min_index], alist[j]
    
    return alist


if __name__ == "__main__":
    s = select_sort([1, 3, 7, 2, 8, 9, 4, 5, 0, 6])
    print(s)

时间复杂度

  • 最优时间复杂度:O(n2)
  • 最坏时间复杂度:O(n2)
  • 稳定性:不稳定(考虑升序每次选择最大的情况)

插入排序

# coding:utf-8

def insert_sort(alist):
    """插入排序"""
    n = len(alist)
    for j in range(1, n):  # 右边的部分
         for i in range(0, j):  # 左边的部分 i=[0 ~ n-1]
             if alist[i] > alist[j]:
                 alist[i], alist[j] = alist[j], alist[i]
       
    return alist


if __name__ == "__main__":
    i = insert_sort([1, 3, 7, 2, 8, 9, 4, 5, 0, 6])
    print(i)

上面这种是错的,插入排序的思想是右边 无序部分 的值和左边 有序部分 的值的比较,而且是从左边 有序部分 的右边开始。因此应该改成这样:

# coding:utf-8

def insert_sort(alist):
    """插入排序"""
    n = len(alist)
    for j in range(1, n):  # 右边的部分
        for i in range(j, 0, -1):
             if alist[i] > alist[j]:
                 alist[i], alist[j] = alist[j], alist[i]
      
    return alist


if __name__ == "__main__":
    i = insert_sort([1, 3, 7, 2, 8, 9, 4, 5, 0, 6])
    print(i)

优化:

# coding:utf-8

def insert_sort(alist):
    """插入排序"""
    n = len(alist)
    for j in range(1, n):  # 右边的部分
        i = j
        while i > 0:
            if alist[i-1] > alist[i]:
                alist[i-1], alist[i] = alist[i], alist[i-1]
                i -= 1
            else:
                break

    return alist


if __name__ == "__main__":
    i = insert_sort([1, 3, 7, 2, 8, 9, 4, 5, 0, 6])
    print(i)

时间复杂度

  • 最优时间复杂度:O(n) (升序排列,序列已经处于升序状态)
  • 最坏时间复杂度:O(n2)
  • 稳定性:稳定

希尔排序

# coding:utf-8

def shell_sort(alist):
    """希尔排序"""
    n = len(alist)
    gap = n//2  # 取对半

    while gap > 0:
        # 插入算法,与普通的插入算法的区别就是步长gap
        for j in range(gap, n):
            # j = [gap, gap+1, gap+2, gap+3]
            i = j
            while i > 0:
                if alist[i] < alist[i-gap]:
                    alist[i], alist[i-gap] = alist[i-gap], alist[i]
                    i -= gap
                else:
                    break
        # 缩短gap步长
        gap //= 2

    return alist


if __name__ == "__main__":
    i = shell_sort([1, 3, 7, 2, 8, 9, 4, 5, 0, 6])
    print(i)

时间复杂度

  • 最优时间复杂度:根据步长序列的不同而不同
  • 最坏时间复杂度:O(n2)
  • 稳定想:不稳定

快速排序

# coding:utf-8

def quick_sort(alist, first, last):
    """快速排序"""
    if first >= last:
        return

    mid_value = alist[first]
    low = first
    high = last

    while low < high:
        while low < high and alist[high] >= mid_value:
            high -= 1
        alist[low] = alist[high]

        # low 右移
        while low < high and alist[low] < mid_value:
            low += 1
        alist[high] = alist[low]
    # 从循环退出时, low=high
    alist[low] = mid_value
    # 对low左边的列表排序
    quick_sort(alist, first, low-1)  # 对同一个列表的操作,写成这样"quick_sort(alist[:low-1])"相当于传入新的列表
    # 对low右边的列表排序
    quick_sort(alist, low+1, last)


if __name__ == "__main__":
    li = [1, 3, 7, 2, 8, 9, 4, 5, 0, 6]
    quick_sort(li, 0, len(li)-1)
    print(li)

时间复杂度

  • 最优时间复杂度:O(nlogn)
  • 最坏时间复杂度:O(n2)
  • 稳定性:不稳定

归并排序

# coding:utf-8

def merge_sort(alist):
    """归并排序"""
    n = len(alist)
    if n <=1:
        return alist
    min = n//2
    # left 采用归并排序后形成的新的有序的列表
    left_li = merge_sort(alist[:min])
    # right 采用归并排序后形成的新的有序的列表
    right_li = merge_sort(alist[min:])
    # 将两个有序的子序列合并为一个新的整体

    # 左右列表的两个指针
    left_pointer, right_pointer = 0, 0
    # 存放结果的列表
    result = []
    while left_pointer < len(left_li) and right_pointer < len(right_li):
        if left_li[left_pointer] <= right_li[right_pointer]:  # 加等于号 = 是为了遇到相等值时,前面的值还是在前面(稳定)
            result.append(left_li[left_pointer])
            left_pointer += 1
        # elif left_li[left_pointer] > right_li[right_pointer]:
        else:
            result.append(right_li[right_pointer])
            right_pointer += 1
    # 不管左边还是右边走到头,退出循环,然后把与之对应的那一边的最后一个值加进来
    result += left_li[left_pointer:]
    result += right_li[right_pointer:]

    return result


if __name__ == "__main__":
    i = merge_sort([1, 3, 7, 2, 8, 9, 4, 5, 0, 6])
    print(i)

易于理解的版本

def merge_sort(alist):
    if len(alist) <= 1:
        return alist
    # 二分分解
    num = len(alist)/2
    left = merge_sort(alist[:num])
    right = merge_sort(alist[num:])
    # 合并
    return merge(left,right)

def merge(left, right):
    '''合并操作,将两个有序数组left[]和right[]合并成一个大的有序数组'''
    #left与right的下标指针
    l, r = 0, 0
    result = []
    while l<len(left) and r<len(right):
        if left[l] < right[r]:
            result.append(left[l])
            l += 1
        else:
            result.append(right[r])
            r += 1
    result += left[l:]
    result += right[r:]
    return result

alist = [54,26,93,17,77,31,44,55,20]
sorted_alist = mergeSort(alist)
print(sorted_alist)

时间复杂度

  • 最优时间复杂度:O(nlogn)
  • 最坏时间复杂度:O(nlogn)
  • 稳定性:稳定

二分查找

# coding:utf-8

def binary_search(alist, item):
    """二分查找 递归"""
    n = len(alist)
    if n > 0:
        min = n//2
        if item == alist[min]:
            return True
        elif item < alist[min]:
            return binary_search(alist[:min], item)
        else:
            return binary_search(alist[min+1:], item)
    else:
        return False


def binary_search2(alist, item):
    """二分查找  非递归"""
    n = len(alist)
    first = 0
    last = n-1
    while first <= last:
        min = (first + last)//2
        if item == alist[min]:
            return True
        elif item < alist[min]:
            last = min -1
        else:
            first = min + 1
    return False


if __name__ == "__main__":
    print(binary_search([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 5))
    print(binary_search([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 10))
    print(binary_search2([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 5))
    print(binary_search2([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 10))

时间复杂度

  • 最优时间复杂度:O(1)
  • 最坏时间复杂度:O(logn)

二叉树的定义和广度优先遍历和深度优先遍历

# coding:utf-8

class Node(object):
    """树的节点"""
    def __init__(self, item):
        self.elem = item
        self.lchild = None
        self.rchild = None


class Tree(object):
    """二叉树"""
    def __init__(self):
        self.root = None

    def add(self, item):
        """树的插入"""
        node = Node(item)
        if self.root is None:
            self.root = node
            return

        queue = [self.root]
        while queue:
            cur_node = queue.pop(0)
            if cur_node.lchild is None:
                cur_node.lchild = node
                break
            else:
                queue.append(cur_node.lchild)
            if cur_node.rchild is None:
                cur_node.rchild = node
                break
            else:
                queue.append(cur_node.rchild)

    def breadth_travel(self):
        """广度遍历"""
        if self.root is None:
            return
        queue = [self.root]
        while queue:
            cur_node = queue.pop(0)
            print(cur_node.elem, end=" ")
            if cur_node.lchild is not None:
                queue.append(cur_node.lchild)
            if cur_node.rchild is not None:
                queue.append(cur_node.rchild)

    def preorder(self, node):
        """先序遍历"""
        if node is None:
            return

        print(node.elem, end=" ")
        self.preorder(node.lchild)
        self.preorder(node.rchild)

    def inorder(self, node):
        """中序遍历"""
        if node is None:
            return

        self.inorder(node.lchild)
        print(node.elem, end=" ")
        self.inorder(node.rchild)

    def postorder(self, node):
        """后序遍历"""
        if node is None:
            return

        self.postorder(node.lchild)
        self.postorder(node.rchild)
        print(node.elem, end=" ")


if __name__ == "__main__":
    tree = Tree()
    tree.add(0)
    tree.add(1)
    tree.add(2)
    tree.add(3)
    tree.add(4)
    tree.add(5)
    tree.add(6)
    tree.add(7)
    tree.add(8)
    tree.add(9)
    tree.breadth_travel()
    print("\n")
    tree.preorder(tree.root)
    print("\n")
    tree.inorder(tree.root)
    print("\n")
    tree.postorder(tree.root)
posted @ 2019-08-08 15:17  尤利阳  阅读(77)  评论(0编辑  收藏  举报