AIC与BIC
首先看几个问题
1、实现参数的稀疏有什么好处?
一个好处是可以简化模型、避免过拟合。因为一个模型中真正重要的参数可能并不多,如果考虑所有的参数作用,会引发过拟合。并且参数少了模型的解释能力会变强。
2、参数值越小代表模型越简单吗?
是。越复杂的模型,越是会尝试对所有的样本进行拟合,甚至包括一些异常样本点,这就容易造成在较小的区间里预测值产生较大的波动,这种较大的波动也反应了在这个区间的导数很大,而只有较大的参数值才能产生较大的导数。因此复杂的模型,其参数值会比较大。
一、AIC
1、简介
AIC信息准则即Akaike information criterion,是衡量统计模型拟合优良性(Goodness of fit)的一种标准,由于它为日本统计学家赤池弘次创立和发展的,因此又称赤池信息量准则。它建立在熵的概念基础上,可以权衡所估计模型的复杂度和此模型拟合数据的优良性。
2、表达式
- k为参数数量
- L是似然函数
增加自由参数的数目提高了拟合的优良性,AIC鼓励数据拟合的优良性但是尽量避免出现过拟合的情况。所以优先考虑的模型应是AIC值最小的那一个,假设在n个模型中作出选择,可一次算出n个模型的AIC值,并找出最小AIC值对应的模型作为选择对象。
一般而言,当模型复杂度提高(k)增大时,似然函数L也会增大,从而使AIC变小,但是k过大时,似然函数增速减缓,导致AIC增大,模型过于复杂容易造成过拟合现象。
二、BIC
1、简介
BIC= Bayesian Information Criterions,贝叶斯信息准则。
2、表达式
BIC=ln(n)k-2ln(L)
- L是似然函数
- n是样本大小
- K是参数数量
三、总结
1、共性
构造这些统计量所遵循的统计思想是一致的,就是在考虑拟合残差的同事,依自变量个数施加“惩罚”。
2、不同点
- BIC的惩罚项比AIC大,考虑了样本个数,样本数量多,可以防止模型精度过高造成的模型复杂度过高。
- AIC和BIC前半部分是一样的,BIC考虑了样本数量,样本数量过多时,可有效防止模型精度过高造成的模型复杂度过高。
谢谢!