堆排序

一、思想

  1. 堆的初始化,由最底层逐渐向上一层方向,把最大值向上移动,且$heap(parent) >= max(heap(leftchild), heap(rightchild))$
  2. 将最大值移到数组的尾部,将数组尾部的值移动到堆顶。左右孩子的结点各自比较,向上把最大结点的值移动上去。
  3. 父节点为n,$leftchild=2^{n}$, $rightchild=2^{n}+1$。(起始为根节点下标为1)

二、一些计算 

1、 满二叉树结点个数$n=2^{i}-1$(等比数列求和$n=\frac{a_{0}(1-q^{i})}{1-q}$,复习)。

2、因此最后一个结点的位置设为n,$\frac{n}{2}$就是最后一个父节点的位置了。

 

 

 

三、Code

 1 package algorithm;
 2 
 3 /**
 4  * Created by adrian.wu on 2019/2/19.
 5  */
 6 public class HeapSort {
 7     /*
 8     1、Parent * 2 + 1 is left child
 9     2、Parent * 2 + 2 is right child
10      */
11 
12     public void headAdjust(int[] array, int parent, int length) {
13         int pv = array[parent];
14 
15         int left = 2 * parent + 1, right = left + 1;
16 
17         while (left < length) {
18             if (right < length && array[left] < array[right]) left = right;
19             if (pv >= array[left]) break;
20             array[parent] = array[left];
21             parent = left;
22             left = 2 * left + 1;
23             right = left + 1;
24         }
25 
26         array[parent] = pv;
27     }
28 
29     /*
30     1、sort from back to front
31     2、
32      */
33     public void heapSort(int[] array) {
34         //create heap, i-1(when root index starting from 0, if 1 that i is 1)
35         for (int i = array.length / 2; i > 0; i--) {
36             headAdjust(array, i-1, array.length); 
37         }
38 
39         //move the head to the end of the list, then recreate the head. 
40         for (int i = array.length - 1; i > 0; i--) {
41             int temp = array[i];
42             array[i] = array[0];
43             array[0] = temp;
44             headAdjust(array, 0, i);
45         }
46     }
47 }

 

posted @ 2019-02-19 15:56  ylxn  阅读(211)  评论(0编辑  收藏  举报