[bzoj3198][Sdoi2013]spring——容斥+哈希表
题目大意:
给定一些六元组,求有多少对\((i,j)\)满足\(i,j\)中恰有\(k\)对对应相同。
思路:
考虑\(\geq k\)的对数然后简单容斥。
考虑到只有六元组,于是直接枚举子集之后把那几位提取出来,单独把那几位哈希然后计算相同的对数有多少。
但是哈希冲突很大,直接手写哈希表即可。
#include<bits/stdc++.h>
#define REP(i,a,b) for(int i=a,i##_end_=b;i<=i##_end_;++i)
#define DREP(i,a,b) for(int i=a,i##_end_=b;i>=i##_end_;--i)
#define debug(x) cout<<#x<<"="<<x<<" "
#define pii pair<int,int>
#define fi first
#define se second
#define mk make_pair
#define pb push_back
typedef long long ll;
using namespace std;
void File(){
freopen("bzoj3198.in","r",stdin);
freopen("bzoj3198.out","w",stdout);
}
template<typename T>void read(T &_){
_=0; T f=1; char c=getchar();
for(;!isdigit(c);c=getchar())if(c=='-')f=-1;
for(;isdigit(c);c=getchar())_=(_<<1)+(_<<3)+(c^'0');
_*=f;
}
const ll base=97;
const ll mod=100003;
const int maxn=1e5+10;
const int maxm=10+10;
int n,m,all=(1<<6)-1;
ll a[maxn][10],f[maxm],g[maxm];
struct Hash_Table{
int S;
vector<pii>to[maxn];
void reset(int S0){
S=S0;
REP(i,0,mod-1)to[i].clear();
}
bool judge(int x,int y){
REP(i,1,6)if((1<<(i-1))&S)
if(a[x][i]!=a[y][i])
return false;
return true;
}
ll insert(int x){
int num=0;
REP(i,1,6)if((1<<(i-1))&S)
num=(num*base+a[x][i])%mod;
REP(i,0,to[num].size()-1)
if(judge(x,to[num][i].fi)){
++to[num][i].se;
return to[num][i].se-1;
}
to[num].pb(mk(x,1));
return 0;
}
}T;
ll calc(int S){
T.reset(S);
ll ret=0;
REP(i,1,n)ret+=T.insert(i);
return ret;
}
ll C(ll x,ll y){
ll ret=1;
REP(i,x-y+1,x)ret*=i;
REP(i,1,y)ret/=i;
return ret;
}
int main(){
File();
read(n),read(m);
REP(i,1,n)REP(j,1,6)read(a[i][j]);
REP(S,0,all){
int k=__builtin_popcount(S);
f[k]+=calc(S);
}
DREP(i,6,m){
g[i]=f[i];
REP(j,i+1,6)g[i]-=C(j,i)*g[j];
}
printf("%lld\n",g[m]);
return 0;
}