1.Unsupervised learning of video representations using LSTMs

方法:从先前的帧编码预测未来帧序列

相似于Sequence to sequence learning with neural networks论文

方法:使用一个LSTM编码输入文本成固定表示,另一个LSTM解码成不同语言

2.Describing Videos by Exploiting Temporal Structure

该论文发表在iccv2015,是第一篇使用时间关注解决视频描述的文章。

 

方法:使用融合时空运动特征的3D回旋网络

引入attention机制 

3.Long-term recurrent convolutional networks for visual recognition and description 

方法:使用CRFs获得活动物体工具位置的语义元组

使用一层LSTM将元组翻译成句子

缺点:仅用于有限域

 4.Translating videos to natural language using deep recurrent neural networks 

①CNN抽取视频帧特征

平均池化产生单一特征向量代表整个视频

使用LSTM作为序列编码器产生基于向量的描述

缺点:完全忽略视频帧顺序

未利用时间信息

 5. Sequence to Sequence -Video to Text

出现问题:1.现实世界视频复杂(物件场景行为属性多样化,并且难以确定主要内容正确用文本描述事件)

2.对视频描述需要对时间结构敏感以及允许可变长度的输入(视频帧)输出(文本)

方法:端到端序列到序列模型,使用LSTMs

模型:S2VT,学习直接将序列帧映射成序列句子。使用一层LSTM编码视频帧序列成分布式向量表示。这层单一的LSTM对输入编码并解码,允许在编码和解码时分享权重。 

①LSTM对帧逐一编码,帧由CNN输出。为模拟时间活动方面,计算连续帧对之间的光流。流图像通过CNN输出给LSTM作为输出

读取了所有帧,模型就逐句生成句子

同时加入了另外的特征——光流图像提取的特征,因为可以更好的表示视频中的动作

本篇详细方法:

1.LSTMs for sequence modeling

在编码阶段,给一个输入序列X1,2,…n,LSTM计算一个隐藏状态序列(h1,h2,…hn

解码阶段,给定输入序列X的输出序列Y定义分布为p(Y|X)

2.序列到序列视频到文本

其他方法:第一个LSTM将输入序列编码成一个固定长度向量,第二个LSTM将向量映射成序列输出。

本篇方法:一个单一的LSTM进行编码解码。

在前几时间步里,首层LSTM获得序列帧,进行编码,二层LSTM获得隐藏表示ht联结成空的输入句子,然后编码

当视频帧结束后,第二层LSTM会嵌入一个句子开始(BOS)标签,提示开始编码现有的隐藏表示为句子序列

3.视频和文本表示

1RGB frames:使用CNN输入图片提供输出为LSTMs的输入。输入视频帧为256256,裁剪为227227

本篇还移除了原始的最后一层全连接分类层,学习新的特征线性嵌入成一个500维空间。这个低维特征构成到第一层LSTM的输入

2Optical Flow:

抽取经典变分光流特征

创造流图像

计算流强度并作为第三频道增加到流图像

使用CNN初始化在UCF101视频集上的权重来将光流图像分类为101个活动类别。CNNfc6层活性被嵌入到一个低于500维空间里并作为LSTM的输入。

在组合模型中,使用浅融合技术来组合流和RGB特征。

3)文本输入

目标输出单词序列使用one-hot向量解码表示。

通过应用线性变换嵌入单词成低于500的维空间成输入数据,然后通过反向传播学习参数。

嵌入的单词向量连接第一层LSTM的输出ht来构成第二层LSTM的输入。

对于LSTM输出应用softmax成完整的词汇

总结:对视频的特征提取也仅仅对每帧的图像使用CNN网络进行2D特征的提取,同时加入了另外的特征——光流图像提取的特征,因为可以更好的表示视频中的动作,整个视频encoderdecoder过程在一个LSTM模型上完成,考虑到了视频的时序特征,因此使用LSTM网络来顺序进行图像特征的输入,用隐含层来表示整个视频,再接着输入单词来逐个预测单词,之后是详细介绍。

 6. Frame- and Segment-Level Features and Candidate Pool Evaluation for Video Caption Generation2016

这篇文章提出的方法就是用不同的模型在不同种类的特征上进行训练从而来生成视频的描述,再使用一个评估网络来评估生成句子和视频特征之间的关联性,选择关联性最好的为最终的视频描述。

选择的特征有三种:第一种是针对帧的特征,使用GoogleNet来提取特征;第二种是基于视频片段的特征,这里文章使用了两种特征,人工特征dense trajectories和使用C3D网络提取的特征;第二种是数据库给出的视频类别信息,一共20类。

decoder上使用了LSTM的改进版,深层的LSTM,并且一个模型使用两种特征来进行训练,一种来init,另一种来persist

7.Describing Videos using Multi-modal Fusion2016

这篇文章使用了多种类型的特征,比如:图像特征、视频特征、环境音特征、语音特征和种类特征,将它们融合作为视频的表示。其中的的fusion network实际上是单层的FC网络,即对各类型的特征进行加权平均,在输入到decoderLSTM模型来生成描述。

8.Multi-Task Video Captioning with Video and Entailment Generation 2017 ICCV

这篇文章的主要贡献是提出了使用多任务学习来优化视频描述任务,作者认为单独使用一个模型来训练视频描述任务不能很好的提取时序特征也就是动作序列,同时他把视频描述当成了一个推演过程,通过视频特征序列来推演出对应的描述,给出前提(视频特征)得出结果(描述),作者认为单任务单模型不能很好的拟合这种推演过程。因此他提出了用多任务来弥补视频描述中缺乏时序表示和逻辑推演这两方面

 这篇文章模型是没有创新的,还是2015年提出的attentionLSTM模型,每个任务的模型还有视频提取特征方法还有待提升。主要贡献是提出了多任务学习方法,其实个人认为还是加入更多的模型,更多的数据从而得到更好的特征来提升效果。

 9.Weakly Supervised Dense Video Captioning 2017 CVPR

接下来这篇论文就比较厉害了(同时比较复杂),可以说开启了视频描述的新篇章,基于区域序列的多视频描述生成,因为作者觉得视频包含的信息很多,一句话是描述不清楚的,视频中也包含这各种对象,每个对象有着不同的动作,因此提出了基于区域序列的视频描述,同时这些描述要保证多样性,全方位的描述整个视频。如图,对同一个视频,先提取出不同的区域序列,对每个区域序列生成一句描述。至于为什么是弱监督学习,因为现在的视频描述数据库没有针对区域序列的描述数据,只有视频级的描述,要用视频级的描述来学习区域级的描述,因此是弱监督学习。

 参考文献:

1.video caption 历年突破性论文总结

2.CVPR2019 相关论文总结

posted on 2019-09-05 22:49  Google-boy  阅读(2623)  评论(0编辑  收藏  举报