LOJ 1370 Bi-shoe and Phi-shoe(欧拉函数的简单应用)

题目链接:http://lightoj.com/volume_showproblem.php?problem=1370

题意:给你n个整数,第i个整数为Xi。定义phi(k)为k的欧拉函数值,设pi为满足phi(pi)>=Xi的最小整数,题目就是要求sum(p1,p2,p3,...,pn)

思路:对任意x,有prime[i]<=x<prime[i+1]必定有EulerPhi[x]<=prime[i],要满足phi(p)>=x那么p必定为x后面的第一个素数,进行素数打表即可。

code:

 1 #include <cstdio>
 2 #include <cstring>
 3 typedef long long LL;
 4 const int MAXN = 1000005;
 5 
 6 int p[MAXN];
 7 bool isPrime[MAXN];
 8 
 9 void init()
10 {
11     memset(isPrime, true, sizeof(isPrime));
12     isPrime[0] = false;
13     isPrime[1] = false;
14     // isPrime[1000001] = true;
15     for (int i = 2; i * i < MAXN; ++i) {
16         if (isPrime[i]) {
17             int j = i * i;
18             while (j < MAXN) {
19                 isPrime[j] = false;
20                 j += i;
21             }
22         }
23     }
24     int k = 1000003;
25     for (int i = 1000000; i >= 1; --i) {
26         if (isPrime[i]) {
27             p[i] = k;
28             k = i;
29             continue;
30         }
31         p[i] = k;
32     }
33 }
34 
35 int main()
36 {
37     init();
38     int nCase;
39     scanf("%d", &nCase);
40     for (int cas = 1; cas <= nCase; ++cas) {
41         int n, k;
42         scanf("%d", &n);
43         LL ans = 0;
44         for (int i = 0; i < n; ++i) {
45             scanf("%d", &k);
46             ans += p[k];
47         }
48         printf("Case %d: %lld Xukha\n", cas, ans);
49     }
50     return 0;
51 }

 

posted @ 2015-09-02 10:28  jasaiq  阅读(607)  评论(0编辑  收藏  举报