CompletableFuture笔记
CompletableFuture是java8引入的一个很实用的特性,可以视为Future的升级版本,以下几个示例可以说明其主要用法(注:示例来自《java8实战》一书第11章)
一、引子:化同步为异步
为了方便描述,假设"查询电商报价"的场景:有一个商家Shop类,对外提供价格查询的服务getPrice
import java.util.Random; import java.util.concurrent.CompletableFuture; import java.util.concurrent.Future; public class Shop { public String name; private Random random = new Random(); public Shop(String name) { this.name = name; } /** * 计算价格 * * @param product * @return */ private double calculatePrice(String product) { delay(); return random.nextDouble() * product.charAt(0) + product.charAt(1); } /** * 模拟计算价格的耗时 */ private static void delay() { try { Thread.sleep(1000L); } catch (InterruptedException e) { throw new RuntimeException(e); } } /** * 对外提供的报价服务方法 * * @param product * @return */ public double getPrice(String product) { return calculatePrice(product); } }
平台可以调用getPrice方法获取某个商家的报价:
public static void main(String[] args) { testSyncGetPrice(); } private static void doSomethingElse() { System.out.println("do something else"); } public static void testSyncGetPrice() { Shop shop = new Shop("BestShop"); long start = System.currentTimeMillis(); System.out.printf("Price is %.2f\n", shop.getPrice("my favorite product")); doSomethingElse(); System.out.println("(SyncGetPrice) Invocation returned after : " + (System.currentTimeMillis() - start) + " ms\n"); }
显然,这是1个同步调用,在shop.getPrice()方法执行完前,后面的doSomethingElse()只能等着,输出结果如下:
Price is 222.01 do something else (SyncGetPrice) Invocation returned after : 1015 ms
为了消除同步阻塞,可以借用Future将同步的getPrice方法调用,转换成异步。
public Future<Double> getPriceAsync(String product) { Future<Double> submit = Executors.newFixedThreadPool(1).submit(() -> calculatePrice(product)); return submit; }
上面的submit方法,最终调用的是java.util.concurrent.AbstractExecutorService#submit(java.util.concurrent.Callable<T>)
/** * @throws RejectedExecutionException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public <T> Future<T> submit(Callable<T> task) { if (task == null) throw new NullPointerException(); RunnableFuture<T> ftask = newTaskFor(task); execute(ftask); return ftask; }
如果继续追下去的话,execute方法,又是调用的java.util.concurrent.ThreadPoolExecutor#execute方法,创建一个线程来异步执行。将同步转换成异步后,doSomethingElse方法,在getPriceAsync执行期间,就能并发执行了。
public static void doSomethingElse() { System.out.println("do something else"); } public static void testAsyncGetPrice() { Shop shop = new Shop("BestShop"); long start = System.currentTimeMillis(); Future<Double> futurePrice = shop.getPriceAsync("my favorite product"); doSomethingElse(); try { Double price = futurePrice.get(); System.out.printf("Price is %.2f\n", price); } catch (Exception e) { throw new RuntimeException(e); } System.out.println("(AsyncGetPrice) Invocation returned after : " + (System.currentTimeMillis() - start) + " ms\n"); } public static void main(String[] args) { testAsyncGetPrice(); }
输出结果:
do something else Price is 201.69 (AsyncGetPrice) Invocation returned after : 1111 ms
二、同步转换成异步的其它方式
CompletableFuture出现后,"同步调用"转换成"异步调用"的方式,有了新的选择:
public Future<Double> getPriceAsync1(String product) { CompletableFuture<Double> futurePrice = new CompletableFuture<Double>(); new Thread(() -> { try { double price = calculatePrice(product); futurePrice.complete(price); } catch (Exception e) { futurePrice.completeExceptionally(e); } }).start(); return futurePrice; } public Future<Double> getPriceAsync2(String product) { return CompletableFuture.supplyAsync(() -> calculatePrice(product)); }
上面这2种方法效果等价,显然第2种supplyAsync的写法更简洁。需要说明的是:CompletableFuture内部其实也是使用线程池来处理的,只不过这个线程池的类型默认是ForkJoinPool,这一点可以从java.util.concurrent.CompletableFuture#asyncPool源码看出来:
/** * Default executor -- ForkJoinPool.commonPool() unless it cannot * support parallelism. */ private static final Executor asyncPool = useCommonPool ? ForkJoinPool.commonPool() : new ThreadPerTaskExecutor();
三、CompletableFuture中使用自定义线程池
如果需要查询报价的商家有很多,比如:6个,逐一同步调用getPrice方法,时长大约就是6个商家的总时长累加
static List<Shop> shops = Arrays.asList( new Shop("1-shop"), new Shop("2-shop"), new Shop("3-shop"), new Shop("4-shop"), new Shop("5-shop"), new Shop("6-shop") ); public static void main(String[] args) { testFindPrices(); } public static List<String> findPrices(String product) { return shops.stream() .map(shop -> String.format("%s price is %.2f", shop.name, shop.getPrice(product))) .collect(Collectors.toList()); }
输出:
[1-shop price is 180.36, 2-shop price is 206.13, 3-shop price is 205.49, 4-shop price is 184.62, 5-shop price is 222.73, 6-shop price is 143.19] do something else (findPrices-Stream) Invocation returned after : 6102 ms
这显然太慢了,要知道现代计算机都是多核cpu体系,很容易想到把stream换成parallelStream,可以充分发挥多核优势:
public static List<String> findPricesParallel(String product) { return shops.parallelStream() .map(shop -> String.format("%s price is %.2f", shop.name, shop.getPrice(product))) .collect(Collectors.toList()); }
还是刚才的测试场景,这时输出结果类似下面这样:(注:测试机器为mac 4核笔记本)
[1-shop price is 137.42, 2-shop price is 168.93, 3-shop price is 182.89, 4-shop price is 154.60, 5-shop price is 192.70, 6-shop price is 179.06] do something else (findPrices-parallelStream) Invocation returned after : 2102 ms
比刚才好多了,耗时从6s缩短到2s,但仔细想一想:6个商家的getPrice处理,分摊到4个核上,还是有2个核会出现阻塞(即:平均1个核并行处理1个task,6-4=2,仍然有2个task要排队)。
如果换成用CompletableFuture默认的ForkJoinPool呢,性能会不会好一些?
public static List<String> findPricesFuture() { List<CompletableFuture<String>> priceFutures = shops.parallelStream() .map(shop -> CompletableFuture.supplyAsync(() -> String.format("%s price is %.2f", shop.name, shop.getPrice("myPhone27")))) .collect(Collectors.toList()); return priceFutures.parallelStream().map(CompletableFuture::join).collect(Collectors.toList()); } public static void testFindPricesCompletableFuture() { long start = System.currentTimeMillis(); System.out.printf(findPricesFuture().toString() + "\n"); doSomethingElse(); System.out.println("(findPrices-CompletableFuture) Invocation returned after : " + (System.currentTimeMillis() - start) + " ms\n"); }
输出结果(注:上面代码中的parallelStream换成stream,下面的输出结果也差不多)
[1-shop price is 168.57, 2-shop price is 159.43, 3-shop price is 200.08, 4-shop price is 165.64, 5-shop price is 195.11, 6-shop price is 206.83] do something else (findPrices-CompletableFuture) Invocation returned after : 2092 ms
从结果上看,使用CompletableFuture与使用仅使用parallelStream的耗时差不多,并没有性能上的提升。原因在于默认的ForkJoinPool,其默认线程数也是跟CPU核数相关的。在这个场景中,我们至少要6个线程(即:shops.size()),才能让6个商家的getPrice并发处理。按这个思路,我们可以自定义一个线程池,然后传入supplyAsync方法中:
private static final Executor executor = Executors.newFixedThreadPool(Math.min(shops.size(), 100), new ThreadFactory() { public Thread newThread(Runnable r) { Thread t = new Thread(r); t.setDaemon(true); return t; } }); public static List<String> findPricesFutureWithExecutor() { List<CompletableFuture<String>> priceFutures = shops.stream() .map(shop -> CompletableFuture.supplyAsync(() -> String.format("%s price is %.2f", shop.name, shop.getPrice("myPhone27")), executor)) .collect(Collectors.toList()); return priceFutures.stream().map(CompletableFuture::join).collect(Collectors.toList()); } public static void testFindPricesExecutor() { long start = System.currentTimeMillis(); System.out.printf(findPricesFutureWithExecutor().toString() + "\n"); doSomethingElse(); System.out.println("(findPrices-FutureWithExecutor) Invocation returned after : " + (System.currentTimeMillis() - start) + " ms\n"); } public static void main(String[] args) { testFindPricesExecutor(); }
输出结果如下:
[1-shop price is 177.26, 2-shop price is 227.09, 3-shop price is 179.98, 4-shop price is 127.19, 5-shop price is 208.93, 6-shop price is 229.91] do something else (findPrices-FutureWithExecutor) Invocation returned after : 1121 ms
从耗时上看,仅相当于单个商家getPrice的耗时,已经达到最佳效果。
四、多个异步操作组合
前面提到的商家报价场景,我们再加点料,引入“打折”功能。先把shop调整下:
package future; import java.util.Random; import java.util.concurrent.CompletableFuture; import java.util.concurrent.Future; public class Shop { public String name; private static Random random = new Random(); public Shop(String name) { this.name = name; } private double calculatePrice(String product) { randomDelay(); return random.nextDouble() * product.charAt(0) + product.charAt(1); } public static void randomDelay() { int delay = 500 + random.nextInt(2000); try { Thread.sleep(delay); } catch (InterruptedException e) { throw new RuntimeException(e); } } /** * 查询“(原始)价格”及"对应的折扣" * * @param product * @return */ public String getPriceWithDiscount(String product) { double price = calculatePrice(product); Discount.Code code = Discount.Code.values()[random.nextInt(Discount.Code.values().length)]; String result = String.format("%s:%.2f:%s", name, price, code); System.out.println(result); return result; } }
主要有2处改动:
1 是delay方法引入了随机数,模拟不同商家查询价格时,有着不同的处理时间,显得更真实。
2 是getPriceWithDiscount方法,返回的价格不再是1个double,而是类似下面这样的字符串
1-shop:212.78:NONE 2-shop:182.22:DIAMOND 3-shop:148.91:PLATINUM 4-shop:203.78:SILVER 5-shop:152.75:DIAMOND 6-shop:212.43:NONE
同时包括了原始的价格,以及打折等级(无折扣、白银等级、钻石等级...之类),这里有一个Discount类,代码如下:
package future; import java.math.BigDecimal; public class Discount { /** * 打折类型 */ public enum Code { NONE(0), SILVER(5), GOLD(10), PLATINUM(15), DIAMOND(20); /** * 折扣百分比 */ private final int percentage; Code(int percentage) { this.percentage = percentage; } } /** * 计算折扣后的价格 * @param price * @param code * @return */ private static double apply(double price, Code code) { Shop.randomDelay(); return format(price * (100 - code.percentage) / 100); } private static double format(double d) { BigDecimal decimal = new BigDecimal(d); return decimal.setScale(2, BigDecimal.ROUND_HALF_DOWN).doubleValue(); } /** * 应用折扣,输出最后的处理结果 * * @param quote * @return */ public static String applyDiscount(Quote quote) { return quote.shopName + " price is " + apply(quote.price, quote.discountCode); } }
apply模拟了计算折扣价时,需要一定的耗时randomDelay(),而getPriceWithDiscount返回的字符串,还需要有1个Quota类专门解析其中的原始价格以及折扣等级
/** * 带折扣的报价 */ public class Quote { public final String shopName; public final double price; public final Discount.Code discountCode; public Quote(String shopName, double price, Discount.Code code) { this.shopName = shopName; this.price = price; this.discountCode = code; } /** * 解析价格结果 * * @param s * @return */ public static Quote parse(String s) { String[] split = s.split(":"); String shopName = split[0]; double price = Double.parseDouble(split[1]); Discount.Code discountCode = Discount.Code.valueOf(split[2]); return new Quote(shopName, price, discountCode); } }
引入折扣功能后,原来的“查询商家价格”,可分解成3个步骤:
1. 先调用shop.getPriceWithDiscount 返回“原始价格及折扣等级”字符串
2. 解析1中返回的字符串,将price与discount信息提取出来,并最终封装成Quota对象
3. 调用Discount的applyDiscount,返回最终打折后的价格信息
而且,上面的步骤,3依赖2的完成,2依赖1的完成,用标准写出来的话,大致是下面这个样子:
public static List<String> findDiscountPrices() { return shops.stream() .map(shop -> shop.getPriceWithDiscount("myPhone27")) .map(Quote::parse) .map(Discount::applyDiscount) .collect(Collectors.toList()); } public static void testFindDiscountPrices() { long start = System.currentTimeMillis(); System.out.printf(findDiscountPrices().toString() + "\n"); doSomethingElse(); System.out.println("(findDiscountPrices-stream) Invocation returned after : " + (System.currentTimeMillis() - start) + " ms\n"); } public static void main(String[] args) { testFindDiscountPrices(); }
这是同步的调用方式,可想而知,最终耗时会很大:
1-shop:157.77:DIAMOND 2-shop:138.03:DIAMOND 3-shop:204.60:DIAMOND 4-shop:202.52:NONE 5-shop:155.14:GOLD 6-shop:224.15:SILVER [1-shop price is 126.22, 2-shop price is 110.42, 3-shop price is 163.68, 4-shop price is 202.52, 5-shop price is 139.63, 6-shop price is 212.94] do something else (findDiscountPrices-stream) Invocation returned after : 16449 ms
使用CompletableFuture,可以把1-2-3 这3个步骤都转换成异步,且保证相互之间的依赖关系,代码如下:
public static List<String> findDiscountPricesFuture() { List<CompletableFuture<String>> list = shops.stream() .map(shop -> CompletableFuture.supplyAsync(() -> shop.getPriceWithDiscount("myPhone27"), executor)) .map(f -> f.thenApply(Quote::parse)) .map(f -> f.thenCompose(quote -> CompletableFuture.supplyAsync(() -> Discount.applyDiscount(quote), executor))) .collect(Collectors.toList()); return list.stream().map(CompletableFuture::join).collect(Collectors.toList()); }
输出结果如下:
从结果上看,确实已经是异步了(1个线程处理1个商家的getPrice及Discount计算),整体耗时也大幅下降。但是有一个细节问题,6个商家的最终结果(即:最后的[...]列表输出),是等所有异步操作都执行完,1次性输出的,这在实际应用中,意味着,最终买家能多快看到价格输出,取决于最慢的那个商家,这是不能接受的,理想情况下,应该是哪个商家的服务快,能先计算出结果 ,就应该第1时间展示这家店的价格。
修正后的代码如下:
public static void findDiscountPricesFuture() { long start = System.currentTimeMillis(); CompletableFuture[] futureArray = shops.stream() .map(shop -> CompletableFuture.supplyAsync(() -> shop.getPriceWithDiscount("myPhone27"), executor)) .map(f -> f.thenApply(Quote::parse)) .map(f -> f.thenCompose(quote -> CompletableFuture.supplyAsync(() -> Discount.applyDiscount(quote), executor))) .map(f -> f.thenAccept(s -> System.out.println(s + " (done in " + (System.currentTimeMillis() - start) + " ms)"))) .toArray(size -> new CompletableFuture[size]); CompletableFuture.allOf(futureArray).join(); }
解释:主要是利用了CompletableFuture.allOf()方法,该方法会把数组结果,按完成时间快慢,快的先返回。
从运行效果上看,最终的报价输出,不再是等6个商家全计算好才返回。
出处:http://yjmyzz.cnblogs.com
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。