!HDU 1574 RP-dp-(重点在状态确定)

题意:有n件事。每件事若发生有两种情况。添加RP为a,可是收益会降低c;降低R为a,收益会添加c。

每件事可以发生的前提是小于等于或者大于等于门限值b。求最大收益。

分析:这题我没找到状态,所以就不会了。

又陷入了固定思维,用每件事来作为状态,然后发现找不到转移方程。

应该用RP值来作为状态,状态转移就是从满足门限的RP区间的状态转移到当前状态。

dp[k]表示RP值为k时的最大收益,方程:dp[i]=max(dp[i+a]。dp[i]+c)。

这个方程是在一个循环里求的,循环是用来遍历满足门限的RP区间。所以还要定义变量l。r来标示区间。

另外,这题另一个要做的处理,RP可能为负值,数组下标不能为负,又由于最大的RP总和是10000。所以RP总体向右移10000。

代码:

#include<iostream>
#define INF 10000007
using namespace std;
int t,n,a,b,c;
int dp[20005];//由于总体移动了10000,也就是零点移动到了10000。所以数组大小为20000 
int max(int i,int j)
{
	return i>j?i:j;
}
int main()
{
	cin>>t;
	while(t--){
		cin>>n;
		for(int i=0;i<20006;i++) dp[i]=-INF;
		dp[10000]=0;
		int l=10000,r=10000;
		while(n--){
			cin>>a>>b>>c;
			b+=10000;
			if(a<0){
				for(int i=b;i<=r;i++)
				    dp[i+a]=max(dp[i+a],dp[i]+c);
				l+=a;
			}
			else{
				for(int i=b;i>=l;i--)
				    dp[i+a]=max(dp[i+a],dp[i]+c);
				r+=a;
			}
		}
		int ans=-INF;
		for(int i=l;i<=r;i++)  ans=max(ans,dp[i]);
		cout<<ans<<endl;
	}
}


posted on 2018-02-08 19:14  yjbjingcha  阅读(81)  评论(0编辑  收藏  举报

导航