hdu 3572 Task Schedule(最大流&&建图经典&&dinic)
Task Schedule
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 5550 Accepted Submission(s): 1786
Problem Description
Our geometry princess XMM has stoped her study in computational geometry to concentrate on her newly opened factory. Her factory has introduced M new machines in order to process the coming N tasks. For the i-th task, the factory
has to start processing it at or after day Si, process it for Pi days, and finish the task before or at day Ei. A machine can only work on one task at a time, and each task can be processed by at most one machine at a time. However, a task can be interrupted
and processed on different machines on different days.
Now she wonders whether he has a feasible schedule to finish all the tasks in time. She turns to you for help.
Now she wonders whether he has a feasible schedule to finish all the tasks in time. She turns to you for help.
Input
On the first line comes an integer T(T<=20), indicating the number of test cases.
You are given two integer N(N<=500) and M(M<=200) on the first line of each test case. Then on each of next N lines are three integers Pi, Si and Ei (1<=Pi, Si, Ei<=500), which have the meaning described in the description. It is guaranteed that in a feasible schedule every task that can be finished will be done before or at its end day.
You are given two integer N(N<=500) and M(M<=200) on the first line of each test case. Then on each of next N lines are three integers Pi, Si and Ei (1<=Pi, Si, Ei<=500), which have the meaning described in the description. It is guaranteed that in a feasible schedule every task that can be finished will be done before or at its end day.
Output
For each test case, print “Case x: ” first, where x is the case number. If there exists a feasible schedule to finish all the tasks, print “Yes”, otherwise print “No”.
Print a blank line after each test case.
Print a blank line after each test case.
Sample Input
2
4 3
1 3 5
1 1 4
2 3 7
3 5 9
2 2
2 1 3
1 2 2
Sample Output
Case 1: Yes
Case 2: Yes
Author
allenlowesy
Source
2010 ACM-ICPC Multi-University Training Contest(13)——Host by UESTC
题意:有M个机器。有N个任务。
每一个任务必须在Si 或者以后開始做,在Ei 或者之前完毕,完毕任务必须处理Pi 个时间单位。
当中,每一个任务能够在随意(空暇)机器上工作。每一个机器的同一时刻仅仅能工作一个任务,
每一个任务在同一时刻仅仅能被一个机器工作,并且任务做到一半能够打断,拿去其它机器做。
问:是否能在规定时间内把任务做完。
思路:这题最大流最基本的就是建图。
刚開始学最大流的仅仅会模板的我果断不知道怎么建图。參考大神思路:
直接把0作为源点。最小的開始时间到最大的结束时间作为任务,0到任务的权值为机器个数;
从最大结束时间到它乘以2作为天数,每一个任务连范围内的全部时间点,权值为1,
最大结束时间乘以2加1作为汇点。每一个时间点到汇点权值为机器个数。判满流。
Dinic
#include<stdio.h> #include<string.h> #include<algorithm> #include<queue> using namespace std; #define M 1100 #define inf 0x3f3f3f3f int head[M],dis[M]; int n,m,t,cnt; struct node{ int u,v,next,w; }mp[M*M]; void add(int u,int v,int w){//邻接表 mp[cnt].u=u; mp[cnt].v=v; mp[cnt].w=w; mp[cnt].next=head[u]; head[u]=cnt++; mp[cnt].u=v;//反向边 mp[cnt].v=u; mp[cnt].w=0; mp[cnt].next=head[v]; head[v]=cnt++; } int bfs(){ int s=0; memset(dis,-1,sizeof(dis)); queue <int> q; while(!q.empty()) q.pop(); dis[s]=0; q.push(s); while(!q.empty()){ s=q.front(); q.pop(); for(int i=head[s];i!=-1;i=mp[i].next){ int v=mp[i].v; if(dis[v]==-1&&mp[i].w){ dis[v]=dis[s]+1; if(v==t) return 1;//假设搜到汇点直接结束函数 q.push(v); } } } return 0; } int dfs(int s,int low){ if(s==t) return low; int a,i,ans=0; for(i=head[s];i!=-1;i=mp[i].next){ int v=mp[i].v; if(mp[i].w && dis[v]==dis[s]+1 && (a=dfs(v,min(low,mp[i].w))) ){ mp[i].w-=a; mp[i^1].w+=a;//反向边 ans+=a;//这两行是速度优化 ,我试了非常多次。写的话200多MS, if(ans==low) break;//不写的话就超时 } } return ans; } int main(){ int T,i,j,t1,t2,sum,cas=1; int s[505],e[505],q[505]; scanf("%d",&T); while(T--){ sum=0; t1=inf; t2=-1; scanf("%d%d",&n,&m); for(i=1;i<=n;i++){ scanf("%d%d%d",&q[i],&s[i],&e[i]); t1=min(s[i],t1); t2=max(e[i],t2); sum+=q[i]; } memset(head,-1,sizeof(head)); cnt=0; t=t2*2+1;//t为超级汇点 for(i=t1;i<=t2;i++) add(0,i,m);//超级源点0到每一个任务连线。每条线权值为机器个数 for(i=1;i<=n;i++){ for(j=s[i];j<=e[i];j++){ add(j,j+t2,1);//每一个任务和任务相关的每一天权值设为1 add(j+t2,t2*2+1,m);//每一天到汇点t2*2+1,设置成机器个数m。事实上这我也试了好多次。 // 设置成1,或者q每一个任务的持续的时间数,都能够AC,,好像不影响= =+ } } int ans=0,k; while(bfs()){ while(k=dfs(0,inf)) ans+=k; } if(sum<=ans)//能完毕的话 printf("Case %d: Yes\n\n",cas++); else printf("Case %d: No\n\n",cas++); } return 0; }
posted on 2018-01-24 20:40 yjbjingcha 阅读(118) 评论(0) 编辑 收藏 举报