Mediapipe 手势识别:石头、剪刀、布
参考:
使用该文章代码时,报错如下:TypeError: create_int(): incompatible function arguments. The following argument types
原因:self.mpHands.Hands()中总共有5个参数,但是作者的代码中缺少了一个参数。 TypeError: create_int():函数参数不兼容
正文
效果图
需要调用的类:HandTrackingModule.py
import cv2 import mediapipe as mp import time import math class handDetctor(): def __init__(self, mode=False, maxHands=2, modelComplexity=1, detectionCon=0.5, trackCon=0.5): self.mode = mode self.maxHands = maxHands self.modelComplexity = modelComplexity # 新加入 self.detectionCon = detectionCon self.trackCon = trackCon self.mpHands = mp.solutions.hands self.hands = self.mpHands.Hands(self.mode, self.maxHands, self.modelComplexity, self.detectionCon, self.trackCon) self.mpDraw = mp.solutions.drawing_utils def findHands(self, img, draw=True, ): imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 转换为rgb self.results = self.hands.process(imgRGB) # print(results.multi_hand_landmarks) if self.results.multi_hand_landmarks: for handLms in self.results.multi_hand_landmarks: if draw: self.mpDraw.draw_landmarks(img, handLms, self.mpHands.HAND_CONNECTIONS) return img def findPosition(self, img, handNo=0, draw=True): lmList = [] if self.results.multi_hand_landmarks: myHand = self.results.multi_hand_landmarks[handNo] for id, lm in enumerate(myHand.landmark): # print(id, lm) # 获取手指关节点 h, w, c = img.shape cx, cy = int(lm.x * w), int(lm.y * h) lmList.append([id, cx, cy]) if draw: cv2.putText(img, str(int(id)), (cx + 10, cy + 10), cv2.FONT_HERSHEY_PLAIN, 1, (0, 0, 255), 2) return lmList # 返回列表 包含每个手指的开合状态 def fingerStatus(self, lmList): fingerList = [] id, originx, originy = lmList[0] keypoint_list = [[2, 4], [6, 8], [10, 12], [14, 16], [18, 20]] for point in keypoint_list: id, x1, y1 = lmList[point[0]] id, x2, y2 = lmList[point[1]] if math.hypot(x2 - originx, y2 - originy) > math.hypot(x1 - originx, y1 - originy): fingerList.append(True) else: fingerList.append(False) return fingerList def main(): cap = cv2.VideoCapture(0, cv2.CAP_DSHOW) # 帧率统计 pTime = 0 cTime = 0 detector = handDetctor() while True: success, img = cap.read() img = detector.findHands(img) lmList = detector.findPosition(img, draw=False) if len(lmList) != 0: # print(lmList) print(detector.fingerStatus(lmList)) # 统计屏幕帧率 cTime = time.time() fps = 1 / (cTime - pTime) pTime = cTime cv2.putText(img, str(int(fps)), (10, 70), cv2.FONT_HERSHEY_PLAIN, 3, (255, 0, 255), 3) cv2.imshow("image", img) if cv2.waitKey(2) & 0xFF == 27: break cap.release() if __name__ == '__main__': main()
主类:gestureRecognition.py
import time import cv2 import os import HandTrackingModule as htm wCam, hCam = 640, 480 cap = cv2.VideoCapture(0, cv2.CAP_DSHOW) cap.set(3, wCam) cap.set(4, hCam) # 缓冲图像 picture_path = "gesture_picture" myList = os.listdir(picture_path) print(myList) overlayList = [] for imPath in myList: image = cv2.imread(f'{picture_path}/{imPath}') overlayList.append(image) detector = htm.handDetctor(detectionCon=0.7) while True: success, img = cap.read() img = detector.findHands(img) lmList = detector.findPosition(img, draw=False) if len(lmList) != 0: thumbOpen, firstOpen, secondOpen, thirdOpen, fourthOpen = detector.fingerStatus(lmList) # print('---------------------------') # print('thumbOpen:', thumbOpen) # print('firstOpen:', firstOpen) # print('secondOpen:', secondOpen) # print('thirdOpen:', thirdOpen) # print('fourthOpen:', fourthOpen) if not firstOpen and not secondOpen and not thirdOpen and not fourthOpen: img[0:200, 0:200] = overlayList[1] if firstOpen and secondOpen and not thirdOpen and not fourthOpen: img[0:200, 0:200] = overlayList[0] if firstOpen and secondOpen and thirdOpen and fourthOpen: img[0:200, 0:200] = overlayList[2] cv2.imshow("image", img) if cv2.waitKey(2) & 0xFF == 27: break