并发编程
参考: http://www.cnblogs.com/linhaifeng/articles/6817679.html
一. python并发编程之多进程
1. multiprocessing模块介绍
python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大部分情况需要使用多进程。Python提供了multiprocessing。
multiprocessing模块用来开启子进程,并在子进程中执行我们定制的任务(比如函数),该模块与多线程模块threading的编程接口类似。
multiprocessing模块的功能众多:支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。
需要再次强调的一点是:与线程不同,进程没有任何共享状态,进程修改的数据,改动仅限于该进程内。
2. Process类的介绍
Process([group [, target [, name [, args [, kwargs]]]]]),由该类实例化得到的对象,表示一个子进程中的任务(尚未启动) 强调: 1. 需要使用关键字的方式来指定参数 2. args指定的为传给target函数的位置参数,是一个元组形式,必须有逗号 p=Process(target=myfun,args=('test',))
参数介绍:
group参数未使用,值始终为None target表示调用对象,即子进程要执行的任务 args表示调用对象的位置参数元组,args=(1,2,'egon',) kwargs表示调用对象的字典,kwargs={'name':'egon','age':18} name为子进程的名称
方法介绍:
p.start():启动进程,并调用该子进程中的p.run()
p.run():进程启动时运行的方法,正是它去调用target指定的函数,我们自定义类的类中一定要实现该方法
p.terminate():强制终止进程p,不会进行任何清理操作,如果p创建了子进程,该子进程就成了僵尸进程,使用该方法需要特别小心这种情况。如果p还保存了一个锁那么也将不会被释放,进而导致死锁
p.is_alive():如果p仍然运行,返回True
p.join([timeout]):主线程等待p终止(强调:是主线程处于等的状态,而p是处于运行的状态)。timeout是可选的超时时间,需要强调的是,p.join只能join住start开启的进程,而不能join住run开启的进程
属性介绍:
p.daemon:默认值为False,如果设为True,代表p为后台运行的守护进程,当p的父进程终止时,p也随之终止,并且设定为True后,p不能创建自己的新进程,必须在p.start()之前设置
p.name:进程的名称
p.pid:进程的pid
p.exitcode:进程在运行时为None、如果为–N,表示被信号N结束(了解即可)
p.authkey:进程的身份验证键,默认是由os.urandom()随机生成的32字符的字符串。这个键的用途是为涉及网络连接的底层进程间通信提供安全性,这类连接只有在具有相同的身份验证键时才能成功(了解即可)
3. Process类的使用
注意:在windows中Process()必须放到# if __name__ == '__main__':下
由于Windows没有fork,多处理模块启动一个新的Python进程并导入调用模块。 如果在导入时调用Process(),那么这将启动无限继承的新进程(或直到机器耗尽资源)。 这是隐藏对Process()内部调用的原,使用if __name__ == “__main __”,这个if语句中的语句将不会在导入时被调用。
创建并开启子进程
#开进程的方法一: import time import random from multiprocessing import Process def piao(name): print('%s piaoing' %name) time.sleep(random.randrange(1,5)) print('%s piao end' %name) p1=Process(target=piao,args=('egon',)) #必须加,号 p2=Process(target=piao,args=('alex',)) p3=Process(target=piao,args=('wupeqi',)) p4=Process(target=piao,args=('yuanhao',)) p1.start() p2.start() p3.start() p4.start() print('主线程') 方法一
#开进程的方法二: import time import random from multiprocessing import Process class Piao(Process): def __init__(self,name): super().__init__() self.name=name def run(self): print('%s piaoing' %self.name) time.sleep(random.randrange(1,5)) print('%s piao end' %self.name) p1=Piao('egon') p2=Piao('alex') p3=Piao('wupeiqi') p4=Piao('yuanhao') p1.start() #start会自动调用run p2.start() p3.start() p4.start() print('主线程') 方法二
练习1:把上周所学的socket通信变成并发的形式
下面是没来一个连接就会启动一个server进程。连接很多的情况下根本不适用
from socket import * from multiprocessing import Process server=socket(AF_INET,SOCK_STREAM) server.setsockopt(SOL_SOCKET,SO_REUSEADDR,1) server.bind(('127.0.0.1',8080)) server.listen(5) def talk(conn,client_addr): while True: try: msg=conn.recv(1024) if not msg:break conn.send(msg.upper()) except Exception: break if __name__ == '__main__': #windows下start进程一定要写到这下面 while True: conn,client_addr=server.accept() p=Process(target=talk,args=(conn,client_addr)) p.start()
from socket import * client=socket(AF_INET,SOCK_STREAM) client.connect(('127.0.0.1',8080)) while True: msg=input('>>: ').strip() if not msg:continue client.send(msg.encode('utf-8')) msg=client.recv(1024) print(msg.decode('utf-8'))
Process对象的join方法。join所完成的工作就是进程同步,即主进程一直等待所有的子进程执行结束之后,主进程再终止.
参考: 多进程多线程join理解
import time import random,subprocess from multiprocessing import Process class Piao(Process): def __init__(self,name): super().__init__() self.name=name def run(self): print('%s piaoing' %self.name) time.sleep(10) subprocess.Popen("touch %s" %self.name+".txt",stdin=subprocess.PIPE,stdout=subprocess.PIPE,stderr=subprocess.PIPE,shell=True) # time.sleep(random.randrange(4,8)) print('%s piao end' %self.name) p1=Piao('egon') p2=Piao('alex') p3=Piao('wupeiqi') p4=Piao('yuanhao') p1.daemon=True #守护进程,在没有join的情况下起作用.成为守护进程过后主进程结束,守护进程也会结束。这个例子中,去掉join,根本没有创建文件可以看出. p2.daemon=True p3.daemon=True p4.daemon=True p1.start() #start会自动调用run p2.start() p3.start() p4.start() p1.join() #进程同步的目的。4个子进程都结束,才会结束主进程.这里就阻塞了 p2.join() p3.join() p4.join() print('主线程') 结果: 看着主程序是顺序执行,子进程实际还是并行执行的 egon piaoing alex piaoing wupeiqi piaoing yuanhao piaoing yuanhao piao end alex piao end egon piao end wupeiqi piao end 主线程 如果没有daemon,没有join,结果如下:看着不是顺序执行的,先跑完了主程序。主程序的退出还是在所有子程序完成 egon piaoing alex piaoing 主线程 wupeiqi piaoing yuanhao piaoing egon piao end wupeiqi piao end alex piao end yuanhao piao end Process finished with exit code 0 有daemon没join的情况下: 主进程结束,子进程就结束了 egon piaoing alex piaoing 主线程 wupeiqi piaoing Process finished with exit code 0
Process对象的其他方法或属性(了解)
from multiprocessing import Process import time import random class Piao(Process): def __init__(self,name): super().__init__() self.name = name def run(self): print('%s is piaoing' %self.name) time.sleep(random.randrange(1,5)) print('%s is piao end' %self.name) p1=Piao('egon1') p1.start() print (p1.name) print(p1.pid) p1.terminate()#关闭进程,不会立即关闭,所以is_alive立刻查看的结果可能还是存活 print(p1.is_alive()) #结果为True print('开始') print(p1.is_alive()) #结果为False
僵尸进程和孤儿进程(了解)
import os import sys import time pid = os.getpid() ppid = os.getppid() print ('im father', 'pid', pid, 'ppid', ppid) pid = os.fork() #执行pid=os.fork()则会生成一个子进程 #返回值pid有两种值: # 如果返回的pid值为0,表示在子进程当中 # 如果返回的pid值>0,表示在父进程当中 if pid > 0: print ('father died..') sys.exit(0) # 保证主线程退出完毕 time.sleep(1) print ('im child', os.getpid(), os.getppid()) 执行文件,输出结果: im father pid 32515 ppid 32015 father died.. im child 32516 1
思考:
from multiprocessing import Process import time,os def task(): print('%s is running' %os.getpid()) time.sleep(3) if __name__ == '__main__': p=Process(target=task) p.start() p.join() # 等待进程p结束后,join函数内部会发送系统调用wait,去告诉操作系统回收掉进程p的id号 print(p.pid) #???此时能否看到子进程p的id号 print('主') ======= #答案:可以 #分析: p.join()是像操作系统发送请求,告知操作系统p的id号不需要再占用了,回收就可以, 此时在父进程内还可以看到p.pid,但此时的p.pid是一个无意义的id号,因为操作系统已经将该编号回收 打个比方: 我党相当于操作系统,控制着整个中国的硬件,每个人相当于一个进程,每个人都需要跟我党申请一个身份证号 该号码就相当于进程的pid,人死后应该到我党那里注销身份证号,p.join()就相当于要求我党回收身份证号,但p的家人(相当于主进程) 仍然持有p的身份证,但此刻的身份证已经没有意义
4. 守护进程
个人觉得 p.Deamon=True和p.join一起使用.将进程设置为后台运行,同时join保证所有的子进程执行完毕。
主进程创建守护进程
其一:守护进程会在主进程代码执行结束后就终止
其二:守护进程内无法再开启子进程,否则抛出异常:AssertionError: daemonic processes are not allowed to have children
注意:进程之间是互相独立的,主进程代码运行结束,守护进程随即终止
from multiprocessing import Process import time import random class Piao(Process): def __init__(self,name): self.name=name super().__init__() def run(self): print('%s is piaoing' %self.name) time.sleep(random.randrange(1,3)) print('%s is piao end' %self.name) p=Piao('egon') p.daemon=True #一定要在p.start()前设置,设置p为守护进程,禁止p创建子进程,并且父进程代码执行结束,p即终止运行 p.start() print('主')
#主进程代码运行完毕,守护进程就会结束 from multiprocessing import Process from threading import Thread import time def foo(): print(123) time.sleep(1) print("end123") def bar(): print(456) time.sleep(3) print("end456") p1=Process(target=foo) p2=Process(target=bar) p1.daemon=True p1.start() p2.start() print("main-------") #打印该行则主进程代码结束,则守护进程p1应该被终止,可能会有p1任务执行的打印信息123,因为主进程打印main----时,p1也执行了,但是随即被终止 迷惑人的例子
5. 进程同步(锁)
进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端,是没有问题的,
而共享带来的是竞争,竞争带来的结果就是错乱,如何控制,就是加锁处理
#加锁可以保证多个进程修改同一块数据时,同一时间只能有一个任务可以进行修改,即串行的修改,没错,速度是慢了,但牺牲了速度却保证了数据安全。 虽然可以用文件共享数据实现进程间通信,但问题是: 1.效率低(共享数据基于文件,而文件是硬盘上的数据) 2.需要自己加锁处理 #因此我们最好找寻一种解决方案能够兼顾:1、效率高(多个进程共享一块内存的数据)2、帮我们处理好锁问题。这就是mutiprocessing模块为我们提供的基于消息的IPC通信机制:队列和管道。 队列和管道都是将数据存放于内存中 队列又是基于(管道+锁)实现的,可以让我们从复杂的锁问题中解脱出来, 我们应该尽量避免使用共享数据,尽可能使用消息传递和队列,避免处理复杂的同步和锁问题,而且在进程数目增多时,往往可以获得更好的可获展性。
6. 队列(Queue)推荐使用,进程间通信
进程彼此之间互相隔离,要实现进程间通信(IPC),multiprocessing模块支持两种形式:队列和管道,这两种方式都是使用消息传递的
创建队列的类(底层就是以管道和锁定的方式实现):
Queue([maxsize]):创建共享的进程队列,Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递。
参数介绍:
maxsize是队列中允许最大项数,省略则无大小限制。
方法介绍:
q.put方法用以插入数据到队列中,put方法还有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,该方法会阻塞timeout指定的时间,直到该队列有剩余的空间。如果超时,会抛出Queue.Full异常。如果blocked为False,但该Queue已满,会立即抛出Queue.Full异常。 q.get方法可以从队列读取并且删除一个元素。同样,get方法有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,那么在等待时间内没有取到任何元素,会抛出Queue.Empty异常。如果blocked为False,有两种情况存在,如果Queue有一个值可用,则立即返回该值,否则,如果队列为空,则立即抛出Queue.Empty异常. q.get_nowait():同q.get(False) q.put_nowait():同q.put(False) q.empty():调用此方法时q为空则返回True,该结果不可靠,比如在返回True的过程中,如果队列中又加入了项目。 q.full():调用此方法时q已满则返回True,该结果不可靠,比如在返回True的过程中,如果队列中的项目被取走。 q.qsize():返回队列中目前项目的正确数量,结果也不可靠,理由同q.empty()和q.full()一样 q.cancel_join_thread():不会在进程退出时自动连接后台线程。可以防止join_thread()方法阻塞 q.close():关闭队列,防止队列中加入更多数据。调用此方法,后台线程将继续写入那些已经入队列但尚未写入的数据,但将在此方法完成时马上关闭。如果q被垃圾收集,将调用此方法。关闭队列不会在队列使用者中产生任何类型的数据结束信号或异常。例如,如果某个使用者正在被阻塞在get()操作上,关闭生产者中的队列不会导致get()方法返回错误。 q.join_thread():连接队列的后台线程。此方法用于在调用q.close()方法之后,等待所有队列项被消耗。默认情况下,此方法由不是q的原始创建者的所有进程调用。调用q.cancel_join_thread方法可以禁止这种行为
例子:
''' multiprocessing模块支持进程间通信的两种主要形式:管道和队列 都是基于消息传递实现的,但是队列接口 ''' from multiprocessing import Process,Queue import time q=Queue(3) #put ,get ,put_nowait,get_nowait,full,empty q.put(3) q.put(3) q.put(3) print(q.full()) #满了 print(q.get()) print(q.get()) print(q.get()) print(q.empty()) #空了
应用
from multiprocessing import Process,Queue import time,random,os def consumer(q): while True: res=q.get() time.sleep(random.randint(1,3)) print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res)) def producer(q): for i in range(10): time.sleep(random.randint(1,3)) res='包子%s' %i q.put(res) print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res)) if __name__ == '__main__': q=Queue() #生产者们:即厨师们 p1=Process(target=producer,args=(q,)) #消费者们:即吃货们 c1=Process(target=consumer,args=(q,)) #开始 p1.start() c1.start() print('主')
此时的问题是主进程永远不会结束,原因是:生产者p在生产完后就结束了,但是消费者c在取空了q之后,则一直处于死循环中且卡在q.get()这一步。
解决方式无非是让生产者在生产完毕后,往队列中再发一个结束信号,这样消费者在接收到结束信号后就可以break出死循环
from multiprocessing import Process,Queue import time,random,os def consumer(q): while True: res=q.get() if res is None:break #收到结束信号则结束 time.sleep(random.randint(1,3)) print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res)) def producer(q): for i in range(10): time.sleep(random.randint(1,3)) res='包子%s' %i q.put(res) print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res)) q.put(None) #发送结束信号 if __name__ == '__main__': q=Queue() #生产者们:即厨师们 p1=Process(target=producer,args=(q,)) #消费者们:即吃货们 c1=Process(target=consumer,args=(q,)) #开始 p1.start() c1.start() print('主') 生产者在生产完毕后发送结束信号None
注意:结束信号None,不一定要由生产者发,主进程里同样可以发,但主进程需要等生产者结束后才应该发送该信号
from multiprocessing import Process,Queue import time,random,os def consumer(q): while True: res=q.get() if res is None:break #收到结束信号则结束 time.sleep(random.randint(1,3)) print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res)) def producer(q): for i in range(2): time.sleep(random.randint(1,3)) res='包子%s' %i q.put(res) print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res)) if __name__ == '__main__': q=Queue() #生产者们:即厨师们 p1=Process(target=producer,args=(q,)) #消费者们:即吃货们 c1=Process(target=consumer,args=(q,)) #开始 p1.start() c1.start() p1.join() q.put(None) #发送结束信号 print('主')
但上述解决方式,在有多个生产者和多个消费者时,我们则需要用一个很low的方式去解决
from multiprocessing import Process,Queue import time,random,os def consumer(q): while True: res=q.get() if res is None:break #收到结束信号则结束 time.sleep(random.randint(1,3)) print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res)) def producer(name,q): for i in range(2): time.sleep(random.randint(1,3)) res='%s%s' %(name,i) q.put(res) print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res)) if __name__ == '__main__': q=Queue() #生产者们:即厨师们 p1=Process(target=producer,args=('包子',q)) p2=Process(target=producer,args=('骨头',q)) p3=Process(target=producer,args=('泔水',q)) #消费者们:即吃货们 c1=Process(target=consumer,args=(q,)) c2=Process(target=consumer,args=(q,)) #开始 p1.start() p2.start() p3.start() c1.start() p1.join() #必须保证生产者全部生产完毕,才应该发送结束信号 p2.join() p3.join() q.put(None) #有几个消费者就应该发送几次结束信号None q.put(None) #发送结束信号 print('主')
其实我们的思路无非是发送结束信号而已,有另外一种队列提供了这种机制
#JoinableQueue([maxsize]):这就像是一个Queue对象,但队列允许项目的使用者通知生成者项目已经被成功处理。通知进程是使用共享的信号和条件变量来实现的。 #参数介绍: maxsize是队列中允许最大项数,省略则无大小限制。 #方法介绍: JoinableQueue的实例p除了与Queue对象相同的方法之外还具有: q.task_done():使用者使用此方法发出信号,表示q.get()的返回项目已经被处理。如果调用此方法的次数大于从队列中删除项目的数量,将引发ValueError异常 q.join():生产者调用此方法进行阻塞,直到队列中所有的项目均被处理。阻塞将持续到队列中的每个项目均调用q.task_done()方法为止
from multiprocessing import Process,JoinableQueue import time,random,os def consumer(q): while True: res=q.get() time.sleep(random.randint(1,3)) print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res)) q.task_done() #向q.join()发送一次信号,证明一个数据已经被取走了 def producer(name,q): for i in range(10): time.sleep(random.randint(1,3)) res='%s%s' %(name,i) q.put(res) print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res)) q.join() if __name__ == '__main__': q=JoinableQueue() #生产者们:即厨师们 p1=Process(target=producer,args=('包子',q)) p2=Process(target=producer,args=('骨头',q)) p3=Process(target=producer,args=('泔水',q)) #消费者们:即吃货们 c1=Process(target=consumer,args=(q,)) c2=Process(target=consumer,args=(q,)) c1.daemon=True c2.daemon=True #开始 p_l=[p1,p2,p3,c1,c2] for p in p_l: p.start() p1.join() p2.join() p3.join() print('主') #主进程等--->p1,p2,p3等---->c1,c2 #p1,p2,p3结束了,证明c1,c2肯定全都收完了p1,p2,p3发到队列的数据 #因而c1,c2也没有存在的价值了,应该随着主进程的结束而结束,所以设置成守护进程
7.管道(了解即可)
进程间通信(IPC)方式二:管道(不推荐使用,了解即可)
#创建管道的类: Pipe([duplex]):在进程之间创建一条管道,并返回元组(conn1,conn2),其中conn1,conn2表示管道两端的连接对象,强调一点:必须在产生Process对象之前产生管道 #参数介绍: dumplex:默认管道是全双工的,如果将duplex射成False,conn1只能用于接收,conn2只能用于发送。 #主要方法: conn1.recv():接收conn2.send(obj)发送的对象。如果没有消息可接收,recv方法会一直阻塞。如果连接的另外一端已经关闭,那么recv方法会抛出EOFError。 conn1.send(obj):通过连接发送对象。obj是与序列化兼容的任意对象 #其他方法: conn1.close():关闭连接。如果conn1被垃圾回收,将自动调用此方法 conn1.fileno():返回连接使用的整数文件描述符 conn1.poll([timeout]):如果连接上的数据可用,返回True。timeout指定等待的最长时限。如果省略此参数,方法将立即返回结果。如果将timeout射成None,操作将无限期地等待数据到达。 conn1.recv_bytes([maxlength]):接收c.send_bytes()方法发送的一条完整的字节消息。maxlength指定要接收的最大字节数。如果进入的消息,超过了这个最大值,将引发IOError异常,并且在连接上无法进行进一步读取。如果连接的另外一端已经关闭,再也不存在任何数据,将引发EOFError异常。 conn.send_bytes(buffer [, offset [, size]]):通过连接发送字节数据缓冲区,buffer是支持缓冲区接口的任意对象,offset是缓冲区中的字节偏移量,而size是要发送字节数。结果数据以单条消息的形式发出,然后调用c.recv_bytes()函数进行接收 conn1.recv_bytes_into(buffer [, offset]):接收一条完整的字节消息,并把它保存在buffer对象中,该对象支持可写入的缓冲区接口(即bytearray对象或类似的对象)。offset指定缓冲区中放置消息处的字节位移。返回值是收到的字节数。如果消息长度大于可用的缓冲区空间,将引发BufferTooShort异常。 介绍
from multiprocessing import Process,Pipe import time,os def consumer(p,name): left,right=p left.close() while True: try: baozi=right.recv() print('%s 收到包子:%s' %(name,baozi)) except EOFError: right.close() break def producer(seq,p): left,right=p right.close() for i in seq: left.send(i) # time.sleep(1) else: left.close() if __name__ == '__main__': left,right=Pipe() c1=Process(target=consumer,args=((left,right),'c1')) c1.start() seq=(i for i in range(10)) producer(seq,(left,right)) right.close() left.close() c1.join() print('主进程')
from multiprocessing import Process,Pipe import time,os def adder(p,name): server,client=p client.close() while True: try: x,y=server.recv() except EOFError: server.close() break res=x+y server.send(res) print('server done') if __name__ == '__main__': server,client=Pipe() c1=Process(target=adder,args=((server,client),'c1')) c1.start() server.close() client.send((10,20)) print(client.recv()) client.close() c1.join() print('主进程') #注意:send()和recv()方法使用pickle模块对对象进行序列化。
8.共享数据
展望未来,基于消息传递的并发编程是大势所趋
即便是使用线程,推荐做法也是将程序设计为大量独立的线程集合
通过消息队列交换数据。这样极大地减少了对使用锁定和其他同步手段的需求,
还可以扩展到分布式系统中
进程间通信应该尽量避免使用本节所讲的共享数据的方式
进程间数据是独立的,可以借助于队列或管道实现通信,二者都是基于消息传递的 虽然进程间数据独立,但可以通过Manager实现数据共享,事实上Manager的功能远不止于此 A manager object returned by Manager() controls a server process which holds Python objects and allows other processes to manipulate them using proxies. A manager returned by Manager() will support types list, dict, Namespace, Lock, RLock, Semaphore, BoundedSemaphore, Condition, Event, Barrier, Queue, Value and Array. For example,
from multiprocessing import Manager,Process,Lock import os def work(d,lock): # with lock: #不加锁而操作共享的数据,肯定会出现数据错乱 d['count']-=1 if __name__ == '__main__': lock=Lock() with Manager() as m: dic=m.dict({'count':100}) p_l=[] for i in range(100): p=Process(target=work,args=(dic,lock)) p_l.append(p) p.start() for p in p_l: p.join() print(dic) #{'count': 94}
9. 信号量(了解)
互斥锁 同时只允许一个线程更改数据,而Semaphore是同时允许一定数量的线程更改数据 ,比如厕所有3个坑,那最多只允许3个人上厕所,后面的人只能等里面有人出来了才能再进去,如果指定信号量为3,那么来一个人获得一把锁,计数加1,当计数等于3时,后面的人均需要等待。一旦释放,就有人可以获得一把锁 信号量与进程池的概念很像,但是要区分开,信号量涉及到加锁的概念 from multiprocessing import Process,Semaphore import time,random def go_wc(sem,user): sem.acquire() print('%s 占到一个茅坑' %user) time.sleep(random.randint(0,3)) #模拟每个人拉屎速度不一样,0代表有的人蹲下就起来了 sem.release() if __name__ == '__main__': sem=Semaphore(5) p_l=[] for i in range(13): p=Process(target=go_wc,args=(sem,'user%s' %i,)) p.start() p_l.append(p) for i in p_l: i.join() print('============》')
10.事件(了解)
python线程的事件用于主线程控制其他线程的执行,事件主要提供了三个方法 set、wait、clear。 事件处理的机制:全局定义了一个“Flag”,如果“Flag”值为 False,那么当程序执行 event.wait 方法时就会阻塞,如果“Flag”值为True,那么event.wait 方法时便不再阻塞。 clear:将“Flag”设置为False set:将“Flag”设置为True #_*_coding:utf-8_*_ #!/usr/bin/env python from multiprocessing import Process,Event import time,random def car(e,n): while True: if not e.is_set(): #Flase print('\033[31m红灯亮\033[0m,car%s等着' %n) e.wait() print('\033[32m车%s 看见绿灯亮了\033[0m' %n) time.sleep(random.randint(3,6)) if not e.is_set(): continue print('走你,car', n) break def police_car(e,n): while True: if not e.is_set(): print('\033[31m红灯亮\033[0m,car%s等着' % n) e.wait(1) print('灯的是%s,警车走了,car %s' %(e.is_set(),n)) break def traffic_lights(e,inverval): while True: time.sleep(inverval) if e.is_set(): e.clear() #e.is_set() ---->False else: e.set() if __name__ == '__main__': e=Event() # for i in range(10): # p=Process(target=car,args=(e,i,)) # p.start() for i in range(5): p = Process(target=police_car, args=(e, i,)) p.start() t=Process(target=traffic_lights,args=(e,10)) t.start() print('============》')
11.进程池(Poll)
在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间。多进程是实现并发的手段之一,需要注意的问题是:
- 很明显需要并发执行的任务通常要远大于核数
- 一个操作系统不可能无限开启进程,通常有几个核就开几个进程
- 进程开启过多,效率反而会下降(开启进程是需要占用系统资源的,而且开启多余核数目的进程也无法做到并行)
例如当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,十几个还好,但如果是上百个,上千个。。。手动的去限制进程数量却又太过繁琐,此时可以发挥进程池的功效。
我们就可以通过维护一个进程池来控制进程数目,比如httpd的进程模式,规定最小进程数和最大进程数...
ps:对于远程过程调用的高级应用程序而言,应该使用进程池,Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,就重用进程池中的进程。
创建进程池的类:如果指定numprocess为3,则进程池会从无到有创建三个进程,然后自始至终使用这三个进程去执行所有任务,不会开启其他进程
1 Pool([numprocess [,initializer [, initargs]]]):创建进程池
参数介绍:
1 numprocess:要创建的进程数,如果省略,将默认使用cpu_count()的值 2 initializer:是每个工作进程启动时要执行的可调用对象,默认为None 3 initargs:是要传给initializer的参数组
方法介绍:
p.apply(func [, args [, kwargs]]):在一个池工作进程中执行func(*args,**kwargs),然后返回结果。需要强调的是:此操作并不会在所有池工作进程中并执行func函数。如果要通过不同参数并发地执行func函数,必须从不同线程调用p.apply()函数或者使用p.apply_async() p.apply_async(func [, args [, kwargs]]):在一个池工作进程中执行func(*args,**kwargs),然后返回结果。此方法的结果是AsyncResult类的实例,callback是可调用对象,接收输入参数。当func的结果变为可用时,将理解传递给callback。callback禁止执行任何阻塞操作,否则将接收其他异步操作中的结果。 p.close():关闭进程池,防止进一步操作。如果所有操作持续挂起,它们将在工作进程终止前完成 P.jion():等待所有工作进程退出。此方法只能在close()或teminate()之后调用 -------- 方法apply_async()和map_async()的返回值是AsyncResul的实例obj。实例具有以下方法 obj.get():返回结果,如果有必要则等待结果到达。timeout是可选的。如果在指定时间内还没有到达,将引发一场。如果远程操作中引发了异常,它将在调用此方法时再次被引发。 obj.ready():如果调用完成,返回True obj.successful():如果调用完成且没有引发异常,返回True,如果在结果就绪之前调用此方法,引发异常 obj.wait([timeout]):等待结果变为可用。 obj.terminate():立即终止所有工作进程,同时不执行任何清理或结束任何挂起工作。如果p被垃圾回收,将自动调用此函数
应用:
from multiprocessing import Pool import os,time def work(n): print('%s run' %os.getpid()) time.sleep(3) return n**2 if __name__ == '__main__': p=Pool(3) #进程池中从无到有创建三个进程,以后一直是这三个进程在执行任务 res_l=[] for i in range(10): res=p.apply(work,args=(i,)) #同步调用,直到本次任务执行完毕拿到res,等待任务work执行的过程中可能有阻塞也可能没有阻塞,但不管该任务是否存在阻塞,同步调用都会在原地等着,只是等的过程中若是任务发生了阻塞就会被夺走cpu的执行权限 res_l.append(res) print(res_l)
from multiprocessing import Pool import os,time def work(n): print('%s run' %os.getpid()) time.sleep(3) return n**2 if __name__ == '__main__': p=Pool(3) #进程池中从无到有创建三个进程,以后一直是这三个进程在执行任务 res_l=[] for i in range(10): res=p.apply_async(work,args=(i,)) #同步运行,阻塞、直到本次任务执行完毕拿到res res_l.append(res) #异步apply_async用法:如果使用异步提交的任务,主进程需要使用jion,等待进程池内任务都处理完,然后可以用get收集结果,否则,主进程结束,进程池可能还没来得及执行,也就跟着一起结束了 p.close() p.join() for res in res_l: print(res.get()) #使用get来获取apply_aync的结果,如果是apply,则没有get方法,因为apply是同步执行,立刻获取结果,也根本无需get
#一:使用进程池(异步调用,apply_async) #coding: utf-8 from multiprocessing import Process,Pool import time def func(msg): print( "msg:", msg) time.sleep(1) return msg if __name__ == "__main__": pool = Pool(processes = 3) res_l=[] for i in range(10): msg = "hello %d" %(i) res=pool.apply_async(func, (msg, )) #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去 res_l.append(res) print("==============================>") #没有后面的join,或get,则程序整体结束,进程池中的任务还没来得及全部执行完也都跟着主进程一起结束了 pool.close() #关闭进程池,防止进一步操作。如果所有操作持续挂起,它们将在工作进程终止前完成 pool.join() #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束 print(res_l) #看到的是<multiprocessing.pool.ApplyResult object at 0x10357c4e0>对象组成的列表,而非最终的结果,但这一步是在join后执行的,证明结果已经计算完毕,剩下的事情就是调用每个对象下的get方法去获取结果 for i in res_l: print(i.get()) #使用get来获取apply_aync的结果,如果是apply,则没有get方法,因为apply是同步执行,立刻获取结果,也根本无需get #二:使用进程池(同步调用,apply) #coding: utf-8 from multiprocessing import Process,Pool import time def func(msg): print( "msg:", msg) time.sleep(0.1) return msg if __name__ == "__main__": pool = Pool(processes = 3) res_l=[] for i in range(10): msg = "hello %d" %(i) res=pool.apply(func, (msg, )) #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去 res_l.append(res) #同步执行,即执行完一个拿到结果,再去执行另外一个 print("==============================>") pool.close() pool.join() #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束 print(res_l) #看到的就是最终的结果组成的列表 for i in res_l: #apply是同步的,所以直接得到结果,没有get()方法 print(i)
练习2:使用进程池维护固定数目的进程(重写练习1)
#Pool内的进程数默认是cpu核数,假设为4(查看方法os.cpu_count()) #开启6个客户端,会发现2个客户端处于等待状态 #在每个进程内查看pid,会发现pid使用为4个,即多个客户端公用4个进程 from socket import * from multiprocessing import Pool import os server=socket(AF_INET,SOCK_STREAM) server.setsockopt(SOL_SOCKET,SO_REUSEADDR,1) server.bind(('127.0.0.1',8080)) server.listen(5) def talk(conn,client_addr): print('进程pid: %s' %os.getpid()) while True: try: msg=conn.recv(1024) if not msg:break conn.send(msg.upper()) except Exception: break if __name__ == '__main__': p=Pool() while True: conn,client_addr=server.accept() p.apply_async(talk,args=(conn,client_addr)) # p.apply(talk,args=(conn,client_addr)) #同步的话,则同一时间只有一个客户端能访问
from socket import * client=socket(AF_INET,SOCK_STREAM) client.connect(('127.0.0.1',8080)) while True: msg=input('>>: ').strip() if not msg:continue client.send(msg.encode('utf-8')) msg=client.recv(1024) print(msg.decode('utf-8'))
发现:并发开启多个客户端,服务端同一时间只有3个不同的pid,干掉一个客户端,另外一个客户端才会进来,被3个进程之一处理
回调函数:
需要回调函数的场景:进程池中任何一个任务一旦处理完了,就立即告知主进程:我好了额,你可以处理我的结果了。主进程则调用一个函数去处理该结果,该函数即回调函数
我们可以把耗时间(阻塞)的任务放到进程池中,然后指定回调函数(主进程负责执行),这样主进程在执行回调函数时就省去了I/O的过程,直接拿到的是任务的结果。
from multiprocessing import Pool import requests import json import os def get_page(url): print('<进程%s> get %s' %(os.getpid(),url)) respone=requests.get(url) if respone.status_code == 200: return {'url':url,'text':respone.text} def pasrse_page(res): print('<进程%s> parse %s' %(os.getpid(),res['url'])) parse_res='url:<%s> size:[%s]\n' %(res['url'],len(res['text'])) with open('db.txt','a') as f: f.write(parse_res) if __name__ == '__main__': urls=[ 'https://www.baidu.com', 'https://www.python.org', 'https://www.openstack.org', 'https://help.github.com/', 'http://www.sina.com.cn/' ] p=Pool(3) res_l=[] for url in urls: res=p.apply_async(get_page,args=(url,),callback=pasrse_page) res_l.append(res) p.close() p.join() print([res.get() for res in res_l]) #拿到的是get_page的结果,其实完全没必要拿该结果,该结果已经传给回调函数处理了 ''' 打印结果: <进程3388> get https://www.baidu.com <进程3389> get https://www.python.org <进程3390> get https://www.openstack.org <进程3388> get https://help.github.com/ <进程3387> parse https://www.baidu.com <进程3389> get http://www.sina.com.cn/ <进程3387> parse https://www.python.org <进程3387> parse https://help.github.com/ <进程3387> parse http://www.sina.com.cn/ <进程3387> parse https://www.openstack.org [{'url': 'https://www.baidu.com', 'text': '<!DOCTYPE html>\r\n...',...}] '''
from multiprocessing import Pool import time,random import requests import re def get_page(url,pattern): response=requests.get(url) if response.status_code == 200: return (response.text,pattern) def parse_page(info): page_content,pattern=info res=re.findall(pattern,page_content) for item in res: dic={ 'index':item[0], 'title':item[1], 'actor':item[2].strip()[3:], 'time':item[3][5:], 'score':item[4]+item[5] } print(dic) if __name__ == '__main__': pattern1=re.compile(r'<dd>.*?board-index.*?>(\d+)<.*?title="(.*?)".*?star.*?>(.*?)<.*?releasetime.*?>(.*?)<.*?integer.*?>(.*?)<.*?fraction.*?>(.*?)<',re.S) url_dic={ 'http://maoyan.com/board/7':pattern1, } p=Pool() res_l=[] for url,pattern in url_dic.items(): res=p.apply_async(get_page,args=(url,pattern),callback=parse_page) res_l.append(res) for i in res_l: i.get() # res=requests.get('http://maoyan.com/board/7') # print(re.findall(pattern,res.text))
如果在主进程中等待进程池中所有任务都执行完毕后,再统一处理结果,则无需回调函数
from multiprocessing import Pool import time,random,os def work(n): time.sleep(1) return n**2 if __name__ == '__main__': p=Pool() res_l=[] for i in range(10): res=p.apply_async(work,args=(i,)) res_l.append(res) p.close() p.join() #等待进程池中所有进程执行完毕 nums=[] for res in res_l: nums.append(res.get()) #拿到所有结果 print(nums) #主进程拿到所有的处理结果,可以在主进程中进行统一进行处理
进程池的其他实现方式:https://docs.python.org/dev/library/concurrent.futures.html
12. 分布式进程
在Thread和Process中,应当优选Process,因为Process更稳定,而且,Process可以分布到多台机器上,而Thread最多只能分布到同一台机器的多个CPU上。
Python的multiprocessing
模块不但支持多进程,其中managers
子模块还支持把多进程分布到多台机器上。一个服务进程可以作为调度者,将任务分布到其他多个进程中,依靠网络通信。由于managers
模块封装很好,不必了解网络通信的细节,就可以很容易地编写分布式多进程程序。
举个例子:如果我们已经有一个通过Queue
通信的多进程程序在同一台机器上运行,现在,由于处理任务的进程任务繁重,希望把发送任务的进程和处理任务的进程分布到两台机器上。怎么用分布式进程实现?
原有的Queue
可以继续使用,但是,通过managers
模块把Queue
通过网络暴露出去,就可以让其他机器的进程访问Queue
了。
我们先看服务进程,服务进程负责启动Queue
,把Queue
注册到网络上,然后往Queue
里面写入任务:
# task_master.py import random, time, queue from multiprocessing.managers import BaseManager # 发送任务的队列: task_queue = queue.Queue() # 接收结果的队列: result_queue = queue.Queue() # 从BaseManager继承的QueueManager: class QueueManager(BaseManager): pass # 把两个Queue都注册到网络上, callable参数关联了Queue对象: QueueManager.register('get_task_queue', callable=lambda: task_queue) QueueManager.register('get_result_queue', callable=lambda: result_queue) # 绑定端口5000, 设置验证码'abc': manager = QueueManager(address=('', 5000), authkey=b'abc') # 启动Queue: manager.start() # 获得通过网络访问的Queue对象: task = manager.get_task_queue() result = manager.get_result_queue() # 放几个任务进去: for i in range(10): n = random.randint(0, 10000) print('Put task %d...' % n) task.put(n) # 从result队列读取结果: print('Try get results...') for i in range(10): r = result.get(timeout=10) print('Result: %s' % r) # 关闭: manager.shutdown() print('master exit.')
请注意,当我们在一台机器上写多进程程序时,创建的Queue
可以直接拿来用,但是,在分布式多进程环境下,添加任务到Queue
不可以直接对原始的task_queue
进行操作,那样就绕过了QueueManager
的封装,必须通过manager.get_task_queue()
获得的Queue
接口添加。
然后,在另一台机器上启动任务进程(本机上启动也可以):
# task_worker.py import time, sys, queue from multiprocessing.managers import BaseManager # 创建类似的QueueManager: class QueueManager(BaseManager): pass # 由于这个QueueManager只从网络上获取Queue,所以注册时只提供名字: QueueManager.register('get_task_queue') QueueManager.register('get_result_queue') # 连接到服务器,也就是运行task_master.py的机器: server_addr = '127.0.0.1' print('Connect to server %s...' % server_addr) # 端口和验证码注意保持与task_master.py设置的完全一致: m = QueueManager(address=(server_addr, 5000), authkey=b'abc') # 从网络连接: m.connect() # 获取Queue的对象: task = m.get_task_queue() result = m.get_result_queue() # 从task队列取任务,并把结果写入result队列: for i in range(10): try: n = task.get(timeout=1) print('run task %d * %d...' % (n, n)) r = '%d * %d = %d' % (n, n, n*n) time.sleep(1) result.put(r) except Queue.Empty: print('task queue is empty.') # 处理结束: print('worker exit.')
现在,可以试试分布式进程的工作效果了。先启动task_master.py
服务进程:
task_master.py
进程发送完任务后,开始等待result
队列的结果。现在启动task_worker.py
进程:
task_worker.py
进程结束,在task_master.py
进程中会继续打印出结果:
这个简单的Master/Worker模型有什么用?其实这就是一个简单但真正的分布式计算,把代码稍加改造,启动多个worker,就可以把任务分布到几台甚至几十台机器上,比如把计算n*n
的代码换成发送邮件,就实现了邮件队列的异步发送。
Queue对象存储在哪?注意到task_worker.py
中根本没有创建Queue的代码,所以,Queue对象存储在task_master.py
进程中:
│ ┌─────────────────────────────────────────┐ ┌──────────────────────────────────────┐ │task_master.py │ │ │task_worker.py │ │ │ │ │ │ task = manager.get_task_queue() │ │ │ task = manager.get_task_queue() │ │ result = manager.get_result_queue() │ │ result = manager.get_result_queue() │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ▼ │ │ │ │ │ │ ┌─────────────────────────────────┐ │ │ │ │ │ │QueueManager │ │ │ │ │ │ │ │ ┌────────────┐ ┌──────────────┐ │ │ │ │ │ │ │ │ task_queue │ │ result_queue │ │<───┼──┼──┼──────────────┘ │ │ │ └────────────┘ └──────────────┘ │ │ │ │ │ └─────────────────────────────────┘ │ │ │ │ └─────────────────────────────────────────┘ └──────────────────────────────────────┘ │ Network
而Queue
之所以能通过网络访问,就是通过QueueManager
实现的。由于QueueManager
管理的不止一个Queue
,所以,要给每个Queue
的网络调用接口起个名字,比如get_task_queue
。
authkey
有什么用?这是为了保证两台机器正常通信,不被其他机器恶意干扰。如果task_worker.py
的authkey
和task_master.py
的authkey
不一致,肯定连接不上。
小结
Python的分布式进程接口简单,封装良好,适合需要把繁重任务分布到多台机器的环境下。
注意Queue的作用是用来传递任务和接收结果,每个任务的描述数据量要尽量小。比如发送一个处理日志文件的任务,就不要发送几百兆的日志文件本身,而是发送日志文件存放的完整路径,由Worker进程再去共享的磁盘上读取文件。
二. python并发编程之多线程
1.什么是线程
在传统操作系统中,每个进程有一个地址空间,而且默认就有一个控制线程
线程顾名思义,就是一条流水线工作的过程,一条流水线必须属于一个车间,一个车间的工作过程是一个进程
车间负责把资源整合到一起,是一个资源单位,而一个车间内至少有一个流水线
流水线的工作需要电源,电源就相当于cpu
所以,进程只是用来把资源集中到一起(进程只是一个资源单位,或者说资源集合),而线程才是cpu上的执行单位。
多线程(即多个控制线程)的概念是,在一个进程中存在多个控制线程,多个控制线程共享该进程的地址空间,相当于一个车间内有多条流水线,都共用一个车间的资源。
例如,北京地铁与上海地铁是不同的进程,而北京地铁里的13号线是一个线程,北京地铁所有的线路共享北京地铁所有的资源,比如所有的乘客可以被所有线路拉。
2. 线程的创建开销小
创建进程的开销要远大于线程?
如果我们的软件是一个工厂,该工厂有多条流水线,流水线工作需要电源,电源只有一个即cpu(单核cpu)
一个车间就是一个进程,一个车间至少一条流水线(一个进程至少一个线程)
创建一个进程,就是创建一个车间(申请空间,在该空间内建至少一条流水线)
而建线程,就只是在一个车间内造一条流水线,无需申请空间,所以创建开销小
进程之间是竞争关系,线程之间是协作关系?
车间直接是竞争/抢电源的关系,竞争(不同的进程直接是竞争关系,是不同的程序员写的程序运行的,迅雷抢占其他进程的网速,360把其他进程当做病毒干死)
一个车间的不同流水线式协同工作的关系(同一个进程的线程之间是合作关系,是同一个程序写的程序内开启动,迅雷内的线程是合作关系,不会自己干自己)
3. 线程进程区别
线程共享创建它的进程的地址空间; 进程有自己的地址空间。
线程可以直接访问其进程的数据段; 进程拥有自己父进程数据段的副本。
线程可以直接与其进程的其他线程通信; 进程必须使用进程间通信来与兄弟进程通信。
新线程很容易创建; 新进程需要复制父进程。
线程可以对同一进程的线程进行相当大的控制; 进程只能控制子进程。
对主线程的更改(取消,优先级更改等)可能会影响进程的其他线程的行为; 对父进程的更改不会影响子进程。
4. 为何要用多线程
多线程指的是,在一个进程中开启多个线程,简单的讲:如果多个任务共用一块地址空间,那么必须在一个进程内开启多个线程。详细的讲分为4点:
1. 多线程共享一个进程的地址空间
2. 线程比进程更轻量级,线程比进程更容易创建可撤销,在许多操作系统中,创建一个线程比创建一个进程要快10-100倍,在有大量线程需要动态和快速修改时,这一特性很有用
3. 若多个线程都是cpu密集型的,那么并不能获得性能上的增强,但是如果存在大量的计算和大量的I/O处理,拥有多个线程允许这些活动彼此重叠运行,从而会加快程序执行的速度。
4. 在多cpu系统中,为了最大限度的利用多核,可以开启多个线程,比开进程开销要小的多。(这一条并不适用于python)
5. 多线程应用举例
开启一个字处理软件进程,该进程肯定需要办不止一件事情,比如监听键盘输入,处理文字,定时自动将文字保存到硬盘,这三个任务操作的都是同一块数据,因而不能用多进程。只能在一个进程里并发地开启三个线程,如果是单线程,那就只能是,键盘输入时,不能处理文字和自动保存,自动保存时又不能输入和处理文字。
6.经典的线程模型(了解)
多个线程共享同一个进程的地址空间中的资源,是对一台计算机上多个进程的模拟,有时也称线程为轻量级的进程
而对一台计算机上多个进程,则共享物理内存、磁盘、打印机等其他物理资源。
多线程的运行也多进程的运行类似,是cpu在多个线程之间的快速切换。
不同的进程之间是充满敌意的,彼此是抢占、竞争cpu的关系,如果迅雷会和QQ抢资源。而同一个进程是由一个程序员的程序创建,所以同一进程内的线程是合作关系,一个线程可以访问另外一个线程的内存地址,大家都是共享的,一个线程干死了另外一个线程的内存,那纯属程序员脑子有问题。
类似于进程,每个线程也有自己的堆栈
不同于进程,线程库无法利用时钟中断强制线程让出CPU,可以调用thread_yield运行线程自动放弃cpu,让另外一个线程运行。
线程通常是有益的,但是带来了不小程序设计难度,线程的问题是:
1. 父进程有多个线程,那么开启的子线程是否需要同样多的线程
如果是,那么附近中某个线程被阻塞,那么copy到子进程后,copy版的线程也要被阻塞吗,想一想nginx的多线程模式接收用户连接。
2. 在同一个进程中,如果一个线程关闭了问题,而另外一个线程正准备往该文件内写内容呢?
如果一个线程注意到没有内存了,并开始分配更多的内存,在工作一半时,发生线程切换,新的线程也发现内存不够用了,又开始分配更多的内存,这样内存就被分配了多次,这些问题都是多线程编程的典型问题,需要仔细思考和设计。
7. POSIX线程(了解)
为了实现可移植的线程程序,IEEE在IEEE标准1003.1c中定义了线程标准,它定义的线程包叫Pthread。大部分UNIX系统都支持该标准,简单介绍如下
8. 在用户空间实现的线程(了解)
线程的实现可以分为两类:用户级线程(User-Level Thread)和内核线线程(Kernel-Level Thread),后者又称为内核支持的线程或轻量级进程。在多线程操作系统中,各个系统的实现方式并不相同,在有的系统中实现了用户级线程,有的系统中实现了内核级线程。
用户级线程内核的切换由用户态程序自己控制内核切换,不需要内核干涉,少了进出内核态的消耗,但不能很好的利用多核Cpu,目前Linux pthread大体是这么做的。
在用户空间模拟操作系统对进程的调度,来调用一个进程中的线程,每个进程中都会有一个运行时系统,用来调度线程。此时当该进程获取cpu时,进程内再调度出一个线程去执行,同一时刻只有一个线程执行。
9. 在内核空间实现的线程(了解)
内核级线程:切换由内核控制,当线程进行切换的时候,由用户态转化为内核态。切换完毕要从内核态返回用户态;可以很好的利用smp,即利用多核cpu。windows线程就是这样的。
10. 用户级与内核级线程的对比(了解)
一: 以下是用户级线程和内核级线程的区别:
- 内核支持线程是OS内核可感知的,而用户级线程是OS内核不可感知的。
- 用户级线程的创建、撤消和调度不需要OS内核的支持,是在语言(如Java)这一级处理的;而内核支持线程的创建、撤消和调度都需OS内核提供支持,而且与进程的创建、撤消和调度大体是相同的。
- 用户级线程执行系统调用指令时将导致其所属进程被中断,而内核支持线程执行系统调用指令时,只导致该线程被中断。
- 在只有用户级线程的系统内,CPU调度还是以进程为单位,处于运行状态的进程中的多个线程,由用户程序控制线程的轮换运行;在有内核支持线程的系统内,CPU调度则以线程为单位,由OS的线程调度程序负责线程的调度。
- 用户级线程的程序实体是运行在用户态下的程序,而内核支持线程的程序实体则是可以运行在任何状态下的程序。
二: 内核线程的优缺点
优点:
- 当有多个处理机时,一个进程的多个线程可以同时执行。
缺点:
- 由内核进行调度。
三: 用户进程的优缺点
优点:
- 线程的调度不需要内核直接参与,控制简单。
- 可以在不支持线程的操作系统中实现。
- 创建和销毁线程、线程切换代价等线程管理的代价比内核线程少得多。
- 允许每个进程定制自己的调度算法,线程管理比较灵活。
- 线程能够利用的表空间和堆栈空间比内核级线程多。
- 同一进程中只能同时有一个线程在运行,如果有一个线程使用了系统调用而阻塞,那么整个进程都会被挂起。另外,页面失效也会产生同样的问题。
缺点:
- 资源调度按照进程进行,多个处理机下,同一个进程中的线程只能在同一个处理机下分时复用
11. 混合实现(了解)
用户级与内核级的多路复用,内核同一调度内核线程,每个内核线程对应n个用户线程
12. threading 模块
参考: liaoxuefeng多线程
https://www.cnblogs.com/tkqasn/p/5700281.html
引子
多任务可以由多进程完成,也可以由一个进程内的多线程完成。
我们前面提到了进程是由若干线程组成的,一个进程至少有一个线程。
由于线程是操作系统直接支持的执行单元,因此,高级语言通常都内置多线程的支持,Python也不例外,并且,Python的线程是真正的Posix Thread,而不是模拟出来的线程。
Python的标准库提供了两个模块:_thread
和threading
,_thread
是低级模块,threading
是高级模块,对_thread
进行了封装。绝大多数情况下,我们只需要使用threading
这个高级模块。
启动一个线程就是把一个函数传入并创建Thread
实例,然后调用start()
开始执行:
import time, threading # 新线程执行的代码: def loop(): print('thread %s is running...' % threading.current_thread().name) n = 0 while n < 5: n = n + 1 print('thread %s >>> %s' % (threading.current_thread().name, n)) time.sleep(1) print('thread %s ended.' % threading.current_thread().name) print('thread %s is running...' % threading.current_thread().name) t = threading.Thread(target=loop, name='LoopThread') t.start() t.join() print('thread %s ended.' % threading.current_thread().name)
结果:
thread MainThread is running... thread LoopThread is running... thread LoopThread >>> 1 thread LoopThread >>> 2 thread LoopThread >>> 3 thread LoopThread >>> 4 thread LoopThread >>> 5 thread LoopThread ended. thread MainThread ended.
threading 简介
threading用于提供线程相关的操作,线程是应用程序中工作的最小单元。python当前版本的多线程库没有实现优先级、线程组,线程也不能被停止、暂停、恢复、中断。
threading模块提供的类:
Thread, Lock, Rlock, Condition, [Bounded]Semaphore, Event, Timer, local。
threading 模块提供的常用方法:
threading.currentThread(): 返回当前的线程变量。
threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。
threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。
threading 模块提供的常量:
threading.TIMEOUT_MAX 设置threading全局超时时间。
Thread类
Thread是线程类,有两种使用方法,直接传入要运行的方法或从Thread继承并覆盖run():
# coding:utf-8 import threading import time #方法一:将要执行的方法作为参数传给Thread的构造方法 def action(arg): time.sleep(1) print 'the arg is:%s\r' %arg for i in xrange(4): t =threading.Thread(target=action,args=(i,)) t.start() print 'main thread end!' #方法二:从Thread继承,并重写run() class MyThread(threading.Thread): def __init__(self,arg): super(MyThread, self).__init__()#注意:一定要显式的调用父类的初始化函数。 self.arg=arg def run(self):#定义每个线程要运行的函数 time.sleep(1) print 'the arg is:%s\r' % self.arg for i in xrange(4): t =MyThread(i) t.start() print 'main thread end!'
构造方法:
Thread(group=None, target=None, name=None, args=(), kwargs={})
group: 线程组,目前还没有实现,库引用中提示必须是None;
target: 要执行的方法;
name: 线程名;
args/kwargs: 要传入方法的参数。
实例方法:
isAlive(): 返回线程是否在运行。正在运行指启动后、终止前。
get/setName(name): 获取/设置线程名。
start(): 线程准备就绪,等待CPU调度
is/setDaemon(bool): 获取/设置是后台线程(默认前台线程(False))。(在start之前设置)
如果是后台线程,主线程执行过程中,后台线程也在进行,主线程执行完毕后,后台线程不论成功与否,主线程和后台线程均停止
如果是前台线程,主线程执行过程中,前台线程也在进行,主线程执行完毕后,等待前台线程也执行完成后,程序停止
start(): 启动线程。
join([timeout]): 阻塞当前上下文环境的线程,直到调用此方法的线程终止或到达指定的timeout(可选参数)。
使用例子一(未设置setDeamon):
import threading,subprocess import time def action(arg): time.sleep(5) print ('sub thread start!the thread name is:%s\r' % threading.currentThread().getName()) print ('the arg is:%s\r' %arg) subprocess.Popen("touch %s" % arg + ".txt", stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) for i in range(4): t =threading.Thread(target=action,args=(i,)) t.start() print ('main_thread end!') 结果: main_thread end! sub thread start!the thread name is:Thread-1 the arg is:1 the arg is:0 sub thread start!the thread name is:Thread-4 the arg is:3 the arg is:2 Process finished with exit code 0 可以看出,创建的4个“前台”线程,主线程执行过程中,前台线程也在进行,主线程执行完毕后,等待前台线程也执行完成后,程序停止
使用例子二(setDeamon=True),主线程停住,子线程停止。 个人觉得 setDeamon=True和join一起使用较好》
import threading,subprocess import time def action(arg): time.sleep(5) print ('sub thread start!the thread name is:%s\r' % threading.currentThread().getName()) print ('the arg is:%s\r' %arg) subprocess.Popen("touch %s" % arg + ".txt", stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) for i in range(4): t =threading.Thread(target=action,args=(i,)) t.setDaemon(True) # 设置线程为后台线程 t.start() print ('main_thread end!') 结果: main_thread end! Process finished with exit code 0 可以看出,主线程执行完毕后,后台线程不管是成功与否,主线程均停止.实际上是子线程还再运行的也会随着主线程停止而停止。文件更本没创建成功。
线程的join和进程的join一样的。设置join之后,主线程等待子线程全部执行完成后或者子线程超时后,主线程才结束
#coding:utf-8 import threading import time def action(arg): time.sleep(1) print 'sub thread start!the thread name is:%s ' % threading.currentThread().getName() print 'the arg is:%s ' %arg time.sleep(1) thread_list = [] #线程存放列表 for i in xrange(4): t =threading.Thread(target=action,args=(i,)) t.setDaemon(True) thread_list.append(t) for t in thread_list: t.start() for t in thread_list: t.join() 结果: sub thread start!the thread name is:Thread-2 the arg is:1 sub thread start!the thread name is:Thread-3 the arg is:2 sub thread start!the thread name is:Thread-1 the arg is:0 sub thread start!the thread name is:Thread-4 the arg is:3 main_thread end! Process finished with exit code 0 设置join之后,主线程等待子线程全部执行完成后或者子线程超时后,主线程才结束
Lock、Rlock类
多线程和多进程最大的不同在于,多进程中,同一个变量,各自有一份拷贝存在于每个进程中,互不影响,而多线程中,所有变量都由所有线程共享,所以,任何一个变量都可以被任何一个线程修改,因此,线程之间共享数据最大的危险在于多个线程同时改一个变量,把内容给改乱了。
由于线程之间随机调度:某线程可能在执行n条后,CPU接着执行其他线程。为了多个线程同时操作一个内存中的资源时不产生混乱,我们使用锁。
Lock(指令锁)是可用的最低级的同步指令。Lock处于锁定状态时,不被特定的线程拥有。Lock包含两种状态——锁定和非锁定,以及两个基本的方法。
可以认为Lock有一个锁定池,当线程请求锁定时,将线程至于池中,直到获得锁定后出池。池中的线程处于状态图中的同步阻塞状态。
RLock(可重入锁)是一个可以被同一个线程请求多次的同步指令。RLock使用了“拥有的线程”和“递归等级”的概念,处于锁定状态时,RLock被某个线程拥有。拥有RLock的线程可以再次调用acquire(),释放锁时需要调用release()相同次数。
可以认为RLock包含一个锁定池和一个初始值为0的计数器,每次成功调用 acquire()/release(),计数器将+1/-1,为0时锁处于未锁定状态。
简言之:Lock属于全局,Rlock属于线程。
构造方法:
Lock(),Rlock(),推荐使用Rlock()
实例方法:
acquire([timeout]): 尝试获得锁定。使线程进入同步阻塞状态。
release(): 释放锁。使用前线程必须已获得锁定,否则将抛出异常。
我们定义了一个共享变量balance
,初始值为0
,并且启动两个线程,先存后取,理论上结果应该为0
,但是,由于线程的调度是由操作系统决定的,当t1、t2交替执行时,只要循环次数足够多,balance
的结果就不一定是0
了。
import time, threading # 假定这是你的银行存款: balance = 0 def change_it(n): # 先存后取,结果应该为0: global balance balance = balance + n balance = balance - n def run_thread(n): for i in range(100000): change_it(n) t1 = threading.Thread(target=run_thread, args=(5,)) t2 = threading.Thread(target=run_thread, args=(8,)) t1.start() t2.start() t1.join() t2.join() print(balance) 结果; 各种不为0的结果都有 8
import time, threading # 假定这是你的银行存款: balance = 0 lock=threading.Lock() def change_it(n): # 先存后取,结果应该为0: global balance balance = balance + n balance = balance - n def run_thread(n): for i in range(100000): lock.acquire() try: # 放心地改吧: change_it(n) finally: # 改完了一定要释放锁: lock.release() t1 = threading.Thread(target=run_thread, args=(5,)) t2 = threading.Thread(target=run_thread, args=(8,)) t1.start() t2.start() t1.join() t2.join() print(balance)
锁的好处就是确保了某段关键代码只能由一个线程从头到尾完整地执行,坏处当然也很多,首先是阻止了多线程并发执行,包含锁的某段代码实际上只能以单线程模式执行,效率就大大地下降了。其次,由于可以存在多个锁,不同的线程持有不同的锁,并试图获取对方持有的锁时,可能会造成死锁,导致多个线程全部挂起,既不能执行,也无法结束,只能靠操作系统强制终止。
Lock对比Rlock
#coding:utf-8
import threading
lock = threading.Lock() #Lock对象
lock.acquire()
lock.acquire() #产生了死锁。
lock.release()
lock.release()
print lock.acquire()
import threading
rLock = threading.RLock() #RLock对象
rLock.acquire()
rLock.acquire() #在同一线程内,程序不会堵塞。
rLock.release()
rLock.release()
13. 在Python中,可以使用多线程,但不要指望能有效利用多核
如果你不幸拥有一个多核CPU,你肯定在想,多核应该可以同时执行多个线程。
如果写一个死循环的话,会出现什么情况呢?
打开Mac OS X的Activity Monitor,或者Windows的Task Manager,都可以监控某个进程的CPU使用率。
我们可以监控到一个死循环线程会100%占用一个CPU。
如果有两个死循环线程,在多核CPU中,可以监控到会占用200%的CPU,也就是占用两个CPU核心。
要想把N核CPU的核心全部跑满,就必须启动N个死循环线程。
试试用Python写个死循环:
import threading, multiprocessing def loop(): x = 10 while True: x = pow(10,x) for i in range(multiprocessing.cpu_count()): t = threading.Thread(target=loop) t.start() 能看到某一核心的CPU可以跑到100%,但是不会出现全部跑到100%,说明了只利用到了一个线程.
import threading, multiprocessing from multiprocessing import Process def loop(): x = 10 while True: x = pow(10,x) for i in range(multiprocessing.cpu_count()): t = Process(target=loop) t.start() #结果几个cpu同时全部跑满100%的负载
启动与CPU核心数量相同的N个线程,在4核CPU上可以监控到CPU占用率仅有102%,也就是仅使用了一核。
但是用C、C++或Java来改写相同的死循环,直接可以把全部核心跑满,4核就跑到400%,8核就跑到800%,为什么Python不行呢?
因为Python的线程虽然是真正的线程,但解释器执行代码时,有一个GIL锁:Global Interpreter Lock,任何Python线程执行前,必须先获得GIL锁,然后,每执行100条字节码,解释器就自动释放GIL锁,让别的线程有机会执行。这个GIL全局锁实际上把所有线程的执行代码都给上了锁,所以,多线程在Python中只能交替执行,即使100个线程跑在100核CPU上,也只能用到1个核。
GIL是Python解释器设计的历史遗留问题,通常我们用的解释器是官方实现的CPython,要真正利用多核,除非重写一个不带GIL的解释器。
所以,在Python中,可以使用多线程,但不要指望能有效利用多核。如果一定要通过多线程利用多核,那只能通过C扩展来实现,不过这样就失去了Python简单易用的特点。
不过,也不用过于担心,Python虽然不能利用多线程实现多核任务,但可以通过多进程实现多核任务。多个Python进程有各自独立的GIL锁,互不影响。
小结
多线程编程,模型复杂,容易发生冲突,必须用锁加以隔离,同时,又要小心死锁的发生。
Python解释器由于设计时有GIL全局锁,导致了多线程无法利用多核。多线程的并发在Python中就是一个美丽的梦。
三. python 并发编程之协程
参考: 异步协程
1. 引子
本节的主题是基于单线程来实现并发,即只用一个主线程(很明显可利用的cpu只有一个)情况下实现并发,为此我们需要先回顾下并发的本质:切换+保存状态
cpu正在运行一个任务,会在两种情况下切走去执行其他的任务(切换由操作系统强制控制),一种情况是该任务发生了阻塞,另外一种情况是该任务计算的时间过长或有一个优先级更高的程序替代了它
ps:在介绍进程理论时,提及进程的三种执行状态,而线程才是执行单位,所以也可以将上图理解为线程的三种状态
一:其中第二种情况并不能提升效率,只是为了让cpu能够雨露均沾,实现看起来所有任务都被“同时”执行的效果,如果多个任务都是纯计算的,这种切换反而会降低效率。为此我们可以基于yield来验证。yield本身就是一种在单线程下可以保存任务运行状态的方法,我们来简单复习一下:
#1 yiled可以保存状态,yield的状态保存与操作系统的保存线程状态很像,但是yield是代码级别控制的,更轻量级 #2 send可以把一个函数的结果传给另外一个函数,以此实现单线程内程序之间的切换
''' 1、协程: 单线程实现并发 在应用程序里控制多个任务的切换+保存状态 优点: 应用程序级别速度要远远高于操作系统的切换 缺点: 多个任务一旦有一个阻塞没有切,整个线程都阻塞在原地 该线程内的其他的任务都不能执行了 一旦引入协程,就需要检测单线程下所有的IO行为, 实现遇到IO就切换,少一个都不行,以为一旦一个任务阻塞了,整个线程就阻塞了, 其他的任务即便是可以计算,但是也无法运行了 2、协程序的目的: 想要在单线程下实现并发 并发指的是多个任务看起来是同时运行的 并发=切换+保存状态 ''' #串行执行 import time def func1(): for i in range(10000000): i+1 def func2(): for i in range(10000000): i+1 start = time.time() func1() func2() stop = time.time() print(stop - start) #基于yield并发执行 import time def func1(): while True: yield def func2(): g=func1() for i in range(10000000): i+1 next(g) start=time.time() func2() stop=time.time() print(stop-start)
二:第一种情况的切换。在任务一遇到io情况下,切到任务二去执行,这样就可以利用任务一阻塞的时间完成任务二的计算,效率的提升就在于此。
import time def func1(): while True: print('func1') yield def func2(): g=func1() for i in range(10000000): i+1 next(g) time.sleep(3) print('func2') start=time.time() func2() stop=time.time() print(stop-start)
对于单线程下,我们不可避免程序中出现io操作,但如果我们能在自己的程序中(即用户程序级别,而非操作系统级别)控制单线程下的多个任务能在一个任务遇到io阻塞时就切换到另外一个任务去计算,这样就保证了该线程能够最大限度地处于就绪态,即随时都可以被cpu执行的状态,相当于我们在用户程序级别将自己的io操作最大限度地隐藏起来,从而可以迷惑操作系统,让其看到:该线程好像是一直在计算,io比较少,从而更多的将cpu的执行权限分配给我们的线程。
协程的本质就是在单线程下,由用户自己控制一个任务遇到io阻塞了就切换另外一个任务去执行,以此来提升效率。为了实现它,我们需要找寻一种可以同时满足以下条件的解决方案:
#1. 可以控制多个任务之间的切换,切换之前将任务的状态保存下来,以便重新运行时,可以基于暂停的位置继续执行。 #2. 作为1的补充:可以检测io操作,在遇到io操作的情况下才发生切换
2. 协程介绍
协程:是单线程下的并发,又称微线程,纤程。英文名Coroutine。一句话说明什么是线程:协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。、
需要强调的是:
#1. python的线程属于内核级别的,即由操作系统控制调度(如单线程遇到io或执行时间过长就会被迫交出cpu执行权限,切换其他线程运行) #2. 单线程内开启协程,一旦遇到io,就会从应用程序级别(而非操作系统)控制切换,以此来提升效率(!!!非io操作的切换与效率无关)
对比操作系统控制线程的切换,用户在单线程内控制协程的切换
优点如下:
#1. 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级 #2. 单线程内就可以实现并发的效果,最大限度地利用cpu
缺点如下:
#1. 协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程 #2. 协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程
总结协程特点:
- 必须在只有一个单线程里实现并发
- 修改共享数据不需加锁
- 用户程序里自己保存多个控制流的上下文栈
- 附加:一个协程遇到IO操作自动切换到其它协程(如何实现检测IO,yield、greenlet都无法实现,就用到了gevent模块(select机制))
从语法上来看,协程和生成器类似,都是定义体中包含yield关键字的函数。
yield在协程中的用法:
- 在协程中yield通常出现在表达式的右边,例如:datum = yield,可以产出值,也可以不产出--如果yield关键字后面没有表达式,那么生成器产出None.
- 协程可能从调用方接受数据,调用方是通过send(datum)的方式把数据提供给协程使用,而不是next(...)函数,通常调用方会把值推送给协程。
- 协程可以把控制器让给中心调度程序,从而激活其他的协程
所以总体上在协程中把yield看做是控制流程的方式。
例子: 生产者消费者模型写一个协程
传统的生产者-消费者模型是一个线程写消息,一个线程取消息,通过锁机制控制队列和等待,但一不小心就可能死锁。 如果改用协程,生产者生产消息后,直接通过yield跳转到消费者开始执行,待消费者执行完毕后,切换回生产者继续生产,效率极高: def consumer(): r = '' while True: n = yield r if not n: return print('[CONSUMER] Consuming %s...' % n) r = '200 OK' def produce(c): c.send(None) n = 0 while n < 5: n = n + 1 print('[PRODUCER] Producing %s...' % n) r = c.send(n) print('[PRODUCER] Consumer return: %s' % r) c.close() c = consumer() produce(c) 结果: [PRODUCER] Producing 1... [CONSUMER] Consuming 1... [PRODUCER] Consumer return: 200 OK [PRODUCER] Producing 2... [CONSUMER] Consuming 2... [PRODUCER] Consumer return: 200 OK [PRODUCER] Producing 3... [CONSUMER] Consuming 3... [PRODUCER] Consumer return: 200 OK [PRODUCER] Producing 4... [CONSUMER] Consuming 4... [PRODUCER] Consumer return: 200 OK [PRODUCER] Producing 5... [CONSUMER] Consuming 5... [PRODUCER] Consumer return: 200 OK
注意到consumer
函数是一个generator
,把一个consumer
传入produce
后:
-
首先调用
c.send(None)
启动生成器; -
然后,一旦生产了东西,通过
c.send(n)
切换到consumer
执行; -
consumer
通过yield
拿到消息,处理,又通过yield
把结果传回; -
produce
拿到consumer
处理的结果,继续生产下一条消息; -
produce
决定不生产了,通过c.close()
关闭consumer
,整个过程结束。
整个流程无锁,由一个线程执行,produce
和consumer
协作完成任务,所以称为“协程”,而非线程的抢占式多任务。
最后套用Donald Knuth的一句话总结协程的特点:
“子程序就是协程的一种特例。”
3. Greenlet
如果我们在单个线程内有20个任务,要想实现在多个任务之间切换,使用yield生成器的方式过于麻烦(需要先得到初始化(使用next()方法或者send方法初始化)一次的生成器,然后再调用send。。。非常麻烦),而使用greenlet模块可以非常简单地实现这20个任务直接的切换
yield能实现协程,不过实现过程不易于理解,greenlet是在这方面做了改进。
from greenlet import greenlet import time def A(): while 1: print('-------A-------') time.sleep(0.5) g2.switch() def B(): while 1: print('-------B-------') time.sleep(0.5) g1.switch() g1 = greenlet(A) #创建协程g1 g2 = greenlet(B) g1.switch() #跳转至协程g1 结果: 一直来回跳转 -------A------- -------B------- -------A------- -------B------- -------A------- -------B------- -------A------- -------B-------
单纯的切换(在没有io的情况下或者没有重复开辟内存空间的操作),反而会降低程序的执行速度
#顺序执行 import time def f1(): res=1 for i in range(100000000): res+=i def f2(): res=1 for i in range(100000000): res*=i start=time.time() f1() f2() stop=time.time() print('run time is %s' %(stop-start)) #10.985628366470337 #切换 from greenlet import greenlet import time def f1(): res=1 for i in range(100000000): res+=i g2.switch() def f2(): res=1 for i in range(100000000): res*=i g1.switch() start=time.time() g1=greenlet(f1) g2=greenlet(f2) g1.switch() stop=time.time() print('run time is %s' %(stop-start)) # 52.763017892837524
greenlet只是提供了一种比generator更加便捷的切换方式,当切到一个任务执行时如果遇到io,那就原地阻塞,仍然是没有解决遇到IO自动切换来提升效率的问题。
单线程里的这20个任务的代码通常会既有计算操作又有阻塞操作,我们完全可以在执行任务1时遇到阻塞,就利用阻塞的时间去执行任务2。。。。如此,才能提高效率,这就用到了Gevent模块。
4.Gevent介绍
Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。
#用法 g1=gevent.spawn(func,1,,2,3,x=4,y=5)创建一个协程对象g1,spawn括号内第一个参数是函数名,如eat,后面可以有多个参数,可以是位置实参或关键字实参,都是传给函数eat的 g2=gevent.spawn(func2) g1.join() #等待g1结束 g2.join() #等待g2结束 #或者上述两步合作一步:gevent.joinall([g1,g2]) g1.value#拿到func1的返回值
遇到IO阻塞时会自动切换任务
import gevent def eat(name): print('%s eat 1' %name) gevent.sleep(2) print('%s eat 2' %name) def play(name): print('%s play 1' %name) gevent.sleep(1) print('%s play 2' %name) g1=gevent.spawn(eat,'egon') g2=gevent.spawn(play,name='egon') g1.join() g2.join() #或者gevent.joinall([g1,g2]) print('主')
上例gevent.sleep(2)模拟的是gevent可以识别的io阻塞,
而time.sleep(2)或其他的阻塞,gevent是不能直接识别的需要用下面一行代码,打补丁,就可以识别了
from gevent import monkey;monkey.patch_all()必须放到被打补丁者的前面,如time,socket模块之前
或者我们干脆记忆成:要用gevent,需要将from gevent import monkey;monkey.patch_all()放到文件的开头