迭代器、生成器
1. 迭代器
1.1 迭代概念
#迭代器即迭代的工具,那什么是迭代呢? #迭代是一个重复的过程,每次重复即一次迭代,并且每次迭代的结果都是下一次迭代的初始值 while True: #只是单纯地重复,因而不是迭代 print('===>') l=[1,2,3] count=0 while count < len(l): #迭代 print(l[count]) count+=1
1.2 可迭代对象与迭代器对象
#1、为何要有迭代器? 对于序列类型:字符串、列表、元组,我们可以使用索引的方式迭代取出其包含的元素。但对于字典、集合、文件等类型是没有索引的,若还想取出其内部包含的元素,则必须找出一种不依赖于索引的迭代方式,这就是迭代器 #2、什么是可迭代对象? 可迭代对象指的是内置有__iter__方法的对象,即obj.__iter__,如下 'hello'.__iter__ (1,2,3).__iter__ [1,2,3].__iter__ {'a':1}.__iter__ {'a','b'}.__iter__ open('a.txt').__iter__ #3、什么是迭代器对象? 可迭代对象执行obj.__iter__()得到的结果就是迭代器对象 而迭代器对象指的是即内置有__iter__又内置有__next__方法的对象 文件类型是迭代器对象 open('a.txt').__iter__() open('a.txt').__next__() #4、注意: 迭代器对象一定是可迭代对象,而可迭代对象不一定是迭代器对象
可以使用isinstance()
判断一个对象是否是Iterable
对象,是否是Iterator对象。
>>> from collections import Iterable,Iterator
>>> isinstance([],Iterable) #列表是可迭代对象
True
>>> isinstance([],Iterator) #但不是迭代器对象
False
>>>
>>> l = [].__iter__() #可迭代对象执行obj.__iter__()或者iter()得到的结果就是迭代器对象.
>>> isinstance(l,Iterator)
True
为什么list
、dict
、str
等数据类型不是Iterator
?
这是因为Python的Iterator
对象表示的是一个数据流,Iterator对象可以被next()
函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration
错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()
函数实现按需计算下一个数据,所以Iterator
的计算是惰性的,只有在需要返回下一个数据时它才会计算。
Iterator
甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。
1.3 迭代器的使用
dic={'a':1,'b':2,'c':3} iter_dic=dic.__iter__() #得到迭代器对象,迭代器对象即有__iter__又有__next__,但是:迭代器.__iter__()得到的仍然是迭代器本身 iter_dic.__iter__() is iter_dic #True print(iter_dic.__next__()) #等同于next(iter_dic) print(iter_dic.__next__()) #等同于next(iter_dic) print(iter_dic.__next__()) #等同于next(iter_dic) # print(iter_dic.__next__()) #抛出异常StopIteration,或者说结束标志 #有了迭代器,我们就可以不依赖索引迭代取值了 iter_dic=dic.__iter__() while 1: try: k=next(iter_dic) print(dic[k]) except StopIteration: break #这么写太丑陋了,需要我们自己捕捉异常,控制next,python这么牛逼,能不能帮我解决呢?能,请看for循环
1.4 for 循环
l=['a','b','c'] #一:下标访问方式 print(l[0]) print(l[1]) print(l[2]) # print(l[3])#超出边界报错:IndexError #二:遵循迭代器协议访问方式 diedai_l=l.__iter__() print(diedai_l.__next__()) print(diedai_l.__next__()) print(diedai_l.__next__()) # print(diedai_l.__next__())#超出边界报错:StopIteration #三:for循环访问方式
#for循环的工作原理 #1:执行in后对象的dic.__iter__()方法,得到一个迭代器对象iter_dic #2: 执行next(iter_dic),将得到的值赋值给k,然后执行循环体代码 #3: 重复过程2,直到捕捉到异常StopIteration,结束循环
#for循环l本质就是遵循迭代器协议的访问方式,先调用diedai_l=l.__iter__()方法,或者直接diedai_l=iter(l),然后依次执行diedai_l.next(),直到for循环捕捉到StopIteration终止循环 #for循环所有对象的本质都是一样的原理 for i in l:#diedai_l=l.__iter__() print(i) #i=diedai_l.next() #四:用while去模拟for循环做的事情 diedai_l=l.__iter__() while True: try: print(diedai_l.__next__()) except StopIteration: print('迭代完毕了,循环终止了') break
1.5 迭代器的优缺点
#优点: - 提供一种统一的、不依赖于索引的迭代方式 - 惰性计算,节省内存 节省内存:比如要逐行读取一个文件的内容,利用readlines()方法,我们可以这么写: for line in open("test.txt").readlines(): print line 注意:这样虽然可以工作,但不是最好的方法。因为他实际上是把文件一次加载到内存中,然后逐行打印。 当文件很大时,这个方法的内存开销就很大了。 利用file的迭代器,我们可以这样写: for line in open("test.txt"): #use file iterators print line 这是最简单也是运行速度最快的写法,他并没显式的读取文件,而是利用迭代器每次读取下一行。file迭代器的 next方法每次都去调用readline(). #缺点: - 无法获取长度(只有在next完毕才知道到底有几个值) - 一次性的,只能往后走,不能往前退
1.6 总结
凡是可作用于for循环的对象都是Iterable类型;
凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;
集合数据类型如list、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。
Python的for循环本质上就是通过不断调用next()函数实现的
2. 生成器
2.1 列表生成式
列表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式。
要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
可以用list(range(1, 11))
>>> list(range(1, 11))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
生成[1x1, 2x2, 3x3, ..., 10x10]
怎么做?
方法一是循环: >>> L = [] >>> for x in range(1, 11): ... L.append(x * x) ... >>> L [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] 但是循环太繁琐,而列表生成式则可以用一行语句代替循环生成上面的list: >>> [x * x for x in range(1, 11)] [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] ##写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来
for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方: >>> [x * x for x in range(1, 11) if x % 2 == 0] [4, 16, 36, 64, 100]
还可以使用两层循环,可以生成全排列:
>>> [m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
for
循环其实可以同时使用两个甚至多个变量,比如dict
的items()
可以同时迭代key和value:
>>> d = {'x': 'A', 'y': 'B', 'z': 'C' } >>> for k, v in d.items(): ... print(k, '=', v)
因此,列表生成式也可以使用两个变量来生成list:
>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> [k + '=' + v for k, v in d.items()]
['y=B', 'x=A', 'z=C']
运用列表生成式,可以写出非常简洁的代码。例如,列出当前目录下的所有文件和目录名,可以通过一行代码实现: >>> import os # 导入os模块,模块的概念后面讲到 >>> [d for d in os.listdir('.')] # os.listdir可以列出文件和目录 ['.emacs.d', '.ssh', '.Trash', 'Adlm', 'Applications', 'Desktop', 'Documents', 'Downloads', 'Library', 'Movies', 'Music', 'Pictures', 'Public',
'VirtualBox VMs', 'Workspace', 'XCode']
2.2 生成器
通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。
要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]
改成()
,就创建了一个generator:
>>> L = [x * x for x in range(10)] >>> L [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] >>> g = (x * x for x in range(10)) >>> g <generator object <genexpr> at 0x1022ef630>
创建L
和g
的区别仅在于最外层的[]
和()
,L
是一个list,而g
是一个generator。
如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值: >>> next(g) 0 >>> next(g) 1 . . . 上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象: >>> g = (x * x for x in range(10)) >>> for n in g: ... print(n)
生成器:生成器函数在Python中与迭代器协议的概念联系在一起。简而言之,包含yield语句的函数会被特地编译成生成器。 当函数被调用时,他们返回一个生成器对象,这个对象支持迭代器接口.不像一般的函数会生成值后退出,生成器函数在生成值后会 自动挂起并暂停他们的执行和状态,他的本地变量将保存状态信息,这些信息在函数恢复时将再度有效. 例如:
>>> def g(n): ... for i in range(n): ... yield i **2 ... >>> for i in g(5): ... print i,":", ... 0 : 1 : 4 : 9 : 16 : 要了解他的运行原理,我们来用next方法看看: >>> t = g(5) >>> t.next() 0 >>> t.next() 1 >>> t.next() 4 >>> t.next() 9 >>> t.next() 16 >>> t.next() Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration
生成器就是迭代器。
generator和函数的执行流程不一样。函数是顺序执行,遇到return
语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()
的时候执行,遇到yield
语句返回,再次执行时从上次返回的yield
语句处继续执行。
def fib(max): n, a, b = 0, 0, 1 while n < max: yield b a, b = b, a + b n = n + 1 return 'done' >>> for n in fib(6): ... print(n) ... 1 1 2 3 5 8 但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中: >>> g = fib(6) >>> while True: ... try: ... x = next(g) ... print('g:', x) ... except StopIteration as e: ... print('Generator return value:', e.value) ... break ... g: 1 g: 1 g: 2 g: 3 g: 5 g: 8 Generator return value: done