先验概率、后验概率、似然估计、条件概率
上周分享会,小伙伴提到了“极大似然估计”,发现隔了一年多,竟然对这些基本的机器学习知识毫无准确的概念了。
先验分布:根据一般的经验认为随机变量应该满足的分布,eg:根据往年的气候经验(经验),推测下雨(结果)的概率即为先验概率;
后验分布:通过当前训练数据修正的随机变量的分布,比先验分布更符合当前数据,eg: 有乌云(原因、观测数据)的时候下雨(结果)的概率即为后验概率;
似然估计:已知训练数据,给定了模型,通过让似然性极大化估计模型参数的一种方法,eg: 下雨(结果)的时候有乌云(观测数据、原因等)的概率即为似然概率;
后验分布往往是基于先验分布和极大似然估计计算出来的。
贝叶斯公式(后验概率公式、逆概率公式):
Θ:决定数据分布的参数(原因)
x: 观察得到的数据(结果)
p(x): 证据因子evidence
p(Θ): 先验概率
p(Θ|x): 后验概率
p(x|Θ): 似然概率
后验概率=似然函数×先验概率/证据因子,证据因子(Evidence,也被称为归一化常数)可仅看成一个权值因子,以保证各类别的后验概率总和为1从而满足概率条件。
备注:
联合概率:P(AB)=P(A)P(B|A)=P(B)P(A|B)
条件概率:P(A|B)=P(AB)|P(B)
贝叶斯公式:P(B|A)=P(A|B)P(B)/P(A)
若流年有爱,就心随花开