Hadoop基础-配置历史服务器

                Hadoop基础-配置历史服务器

                                    作者:尹正杰

版权声明:原创作品,谢绝转载!否则将追究法律责任。

 

 

   Hadoop自带了一个历史服务器,可以通过历史服务器查看已经运行完的Mapreduce作业记录,比如用了多少个Map、用了多少个Reduce、作业提交时间、作业启动时间、作业完成时间等信息。默认情况下,Hadoop历史服务器是没有启动的,我们可以通过Hadoop自带的命令(mr-jobhistory-daemon.sh)来启动Hadoop历史服务器。

 

一.yarn上运行mr程序

1>.启动集群

[yinzhengjie@s101 ~]$ xcall.sh jps
============= s101 jps ============
3043 ResourceManager
2507 NameNode
3389 Jps
2814 DFSZKFailoverController
命令执行成功
============= s102 jps ============
2417 DataNode
2484 JournalNode
2664 NodeManager
2828 Jps
2335 QuorumPeerMain
命令执行成功
============= s103 jps ============
2421 DataNode
2488 JournalNode
2666 NodeManager
2333 QuorumPeerMain
2830 Jps
命令执行成功
============= s104 jps ============
2657 NodeManager
2818 Jps
2328 QuorumPeerMain
2410 DataNode
2477 JournalNode
命令执行成功
============= s105 jps ============
2688 Jps
2355 NameNode
2424 DFSZKFailoverController
命令执行成功
[yinzhengjie@s101 ~]$ 

2>.在yarn上执行MapReduce程序

[yinzhengjie@s101 ~]$ hadoop jar /soft/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.3.jar wordcount /yinzhengjie/data/ /yinzhengjie/data/output
18/08/21 07:37:35 INFO client.RMProxy: Connecting to ResourceManager at s101/172.30.1.101:8032
18/08/21 07:37:37 INFO input.FileInputFormat: Total input paths to process : 1
18/08/21 07:37:37 INFO mapreduce.JobSubmitter: number of splits:1
18/08/21 07:37:37 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1534851274873_0001
18/08/21 07:37:37 INFO impl.YarnClientImpl: Submitted application application_1534851274873_0001
18/08/21 07:37:37 INFO mapreduce.Job: The url to track the job: http://s101:8088/proxy/application_1534851274873_0001/
18/08/21 07:37:37 INFO mapreduce.Job: Running job: job_1534851274873_0001
18/08/21 07:37:55 INFO mapreduce.Job: Job job_1534851274873_0001 running in uber mode : false
18/08/21 07:37:55 INFO mapreduce.Job:  map 0% reduce 0%
18/08/21 07:38:13 INFO mapreduce.Job:  map 100% reduce 0%
18/08/21 07:38:31 INFO mapreduce.Job:  map 100% reduce 100%
18/08/21 07:38:32 INFO mapreduce.Job: Job job_1534851274873_0001 completed successfully
18/08/21 07:38:32 INFO mapreduce.Job: Counters: 49
    File System Counters
        FILE: Number of bytes read=4469
        FILE: Number of bytes written=249719
        FILE: Number of read operations=0
        FILE: Number of large read operations=0
        FILE: Number of write operations=0
        HDFS: Number of bytes read=3925
        HDFS: Number of bytes written=3315
        HDFS: Number of read operations=6
        HDFS: Number of large read operations=0
        HDFS: Number of write operations=2
    Job Counters 
        Launched map tasks=1
        Launched reduce tasks=1
        Data-local map tasks=1
        Total time spent by all maps in occupied slots (ms)=15295
        Total time spent by all reduces in occupied slots (ms)=15161
        Total time spent by all map tasks (ms)=15295
        Total time spent by all reduce tasks (ms)=15161
        Total vcore-milliseconds taken by all map tasks=15295
        Total vcore-milliseconds taken by all reduce tasks=15161
        Total megabyte-milliseconds taken by all map tasks=15662080
        Total megabyte-milliseconds taken by all reduce tasks=15524864
    Map-Reduce Framework
        Map input records=104
        Map output records=497
        Map output bytes=5733
        Map output materialized bytes=4469
        Input split bytes=108
        Combine input records=497
        Combine output records=288
        Reduce input groups=288
        Reduce shuffle bytes=4469
        Reduce input records=288
        Reduce output records=288
        Spilled Records=576
        Shuffled Maps =1
        Failed Shuffles=0
        Merged Map outputs=1
        GC time elapsed (ms)=163
        CPU time spent (ms)=1430
        Physical memory (bytes) snapshot=439443456
        Virtual memory (bytes) snapshot=4216639488
        Total committed heap usage (bytes)=286785536
    Shuffle Errors
        BAD_ID=0
        CONNECTION=0
        IO_ERROR=0
        WRONG_LENGTH=0
        WRONG_MAP=0
        WRONG_REDUCE=0
    File Input Format Counters 
        Bytes Read=3817
    File Output Format Counters 
        Bytes Written=3315
[yinzhengjie@s101 ~]$ 

3>.通过webUI查看hdfs是否有数据产生

4>.查看yarn的记录信息

5>.查看历史日志,发现无法访问

 

 

二.配置yarn历史服务器

1>.修改“mapred-site.xml”配置文件

 1 [yinzhengjie@s101 ~]$ more /soft/hadoop/etc/hadoop/mapred-site.xml
 2 <?xml version="1.0"?>
 3 <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
 4 <configuration>
 5         <property>
 6                 <name>mapreduce.framework.name</name>
 7                 <value>yarn</value>
 8         </property>
 9 
10     <property>
11         <name>mapreduce.jobhistory.address</name>
12         <value>s101:10020</value>
13     </property>
14     
15     <property>
16             <name>mapreduce.jobhistory.webapp.address</name>
17             <value>s101:19888</value>
18     </property>
19 
20 
21     <property>
22           <name>mapreduce.jobhistory.done-dir</name>
23         <value>${yarn.app.mapreduce.am.staging-dir}/done</value>
24     </property>
25 
26     <property>
27             <name>mapreduce.jobhistory.intermediate-done-dir</name>
28             <value>${yarn.app.mapreduce.am.staging-dir}/done_intermediate</value>
29     </property>
30 
31     <property>
32             <name>yarn.app.mapreduce.am.staging-dir</name>
33             <value>/yinzhengjie/logs/hdfs/history</value>
34     </property>
35 
36 </configuration>
37 
38 <!--
39 mapred-site.xml 配置文件的作用:
40         #HDFS的相关设定,如reduce任务的默认个数、任务所能够使用内存
41 的默认上下限等,此中的参数定义会覆盖mapred-default.xml文件中的
42 默认配置.
43 
44 mapreduce.framework.name 参数的作用:
45         #指定MapReduce的计算框架,有三种可选,第一种:local(本地),第
46 二种是classic(hadoop一代执行框架),第三种是yarn(二代执行框架),我
47 们这里配置用目前版本最新的计算框架yarn即可。
48 
49 mapreduce.jobhistory.address 参数的作用:
50     #指定job的历史服务器
51 
52 mapreduce.jobhistory.webapp.address 参数的作用:
53     #指定日志服务器的web访问端口
54 
55 mapreduce.jobhistory.done-dir 参数的作用:
56     #指定存放已经运行完的Hadoop作业记录
57 
58 mapreduce.jobhistory.intermediate-done-dir 参数的作用:
59     #指定正在运行的Hadoop作业记录
60 
61 yarn.app.mapreduce.am.staging-dir 参数的作用:
62     #指定applicationID以及需要的jar包文件等
63 
64 -->
65 [yinzhengjie@s101 ~]$ 

2>.启动历史服务器服务

[yinzhengjie@s101 ~]$ hdfs dfs -mkdir /yinzhengjie/logs/hdfs/history      #创建存放历史日志的路径
[yinzhengjie@s101 ~]$ 
[yinzhengjie@s101 ~]$ mr-jobhistory-daemon.sh start historyserver      #启动历史服务
starting historyserver, logging to /soft/hadoop-2.7.3/logs/mapred-yinzhengjie-historyserver-s101.out
[yinzhengjie@s101 ~]$ 
[yinzhengjie@s101 ~]$ jps
3043 ResourceManager
4009 JobHistoryServer        #注意,这个进程就是历史服务进程
2507 NameNode
4045 Jps
2814 DFSZKFailoverController
[yinzhengjie@s101 ~]$ 

3>.在yarn上执行MapReduce程序

[yinzhengjie@s101 ~]$ hdfs dfs -rm -R /yinzhengjie/data/output        #删除之前的输出路径
18/08/21 08:43:34 INFO fs.TrashPolicyDefault: Namenode trash configuration: Deletion interval = 0 minutes, Emptier interval = 0 minutes.
Deleted /yinzhengjie/data/output
[yinzhengjie@s101 ~]$ 
[yinzhengjie@s101 ~]$ hadoop jar /soft/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.3.jar wordcount /yinzhengjie/data/input  /yinzhengjie/data/output
18/08/21 08:44:58 INFO client.RMProxy: Connecting to ResourceManager at s101/172.30.1.101:8032
18/08/21 08:44:58 INFO input.FileInputFormat: Total input paths to process : 1
18/08/21 08:44:58 INFO mapreduce.JobSubmitter: number of splits:1
18/08/21 08:44:58 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1534851274873_0002
18/08/21 08:44:59 INFO impl.YarnClientImpl: Submitted application application_1534851274873_0002
18/08/21 08:44:59 INFO mapreduce.Job: The url to track the job: http://s101:8088/proxy/application_1534851274873_0002/
18/08/21 08:44:59 INFO mapreduce.Job: Running job: job_1534851274873_0002
18/08/21 08:45:15 INFO mapreduce.Job: Job job_1534851274873_0002 running in uber mode : false
18/08/21 08:45:15 INFO mapreduce.Job:  map 0% reduce 0%
18/08/21 08:45:30 INFO mapreduce.Job:  map 100% reduce 0%
18/08/21 08:45:45 INFO mapreduce.Job:  map 100% reduce 100%
18/08/21 08:45:45 INFO mapreduce.Job: Job job_1534851274873_0002 completed successfully
18/08/21 08:45:46 INFO mapreduce.Job: Counters: 49
    File System Counters
        FILE: Number of bytes read=4469
        FILE: Number of bytes written=249693
        FILE: Number of read operations=0
        FILE: Number of large read operations=0
        FILE: Number of write operations=0
        HDFS: Number of bytes read=3931
        HDFS: Number of bytes written=3315
        HDFS: Number of read operations=6
        HDFS: Number of large read operations=0
        HDFS: Number of write operations=2
    Job Counters 
        Launched map tasks=1
        Launched reduce tasks=1
        Data-local map tasks=1
        Total time spent by all maps in occupied slots (ms)=12763
        Total time spent by all reduces in occupied slots (ms)=12963
        Total time spent by all map tasks (ms)=12763
        Total time spent by all reduce tasks (ms)=12963
        Total vcore-milliseconds taken by all map tasks=12763
        Total vcore-milliseconds taken by all reduce tasks=12963
        Total megabyte-milliseconds taken by all map tasks=13069312
        Total megabyte-milliseconds taken by all reduce tasks=13274112
    Map-Reduce Framework
        Map input records=104
        Map output records=497
        Map output bytes=5733
        Map output materialized bytes=4469
        Input split bytes=114
        Combine input records=497
        Combine output records=288
        Reduce input groups=288
        Reduce shuffle bytes=4469
        Reduce input records=288
        Reduce output records=288
        Spilled Records=576
        Shuffled Maps =1
        Failed Shuffles=0
        Merged Map outputs=1
        GC time elapsed (ms)=139
        CPU time spent (ms)=1610
        Physical memory (bytes) snapshot=439873536
        Virtual memory (bytes) snapshot=4216696832
        Total committed heap usage (bytes)=281018368
    Shuffle Errors
        BAD_ID=0
        CONNECTION=0
        IO_ERROR=0
        WRONG_LENGTH=0
        WRONG_MAP=0
        WRONG_REDUCE=0
    File Input Format Counters 
        Bytes Read=3817
    File Output Format Counters 
        Bytes Written=3315
[yinzhengjie@s101 ~]$ 

4>.通过webUI查看hdfs是否有数据产生

5>.查看yarn的webUI的历史任务

6>.查看历史记录

 

7>.配置日志聚集功能

  详情请参考:https://www.cnblogs.com/yinzhengjie/p/9471921.html

 

posted @ 2018-08-13 08:42  尹正杰  阅读(1131)  评论(0编辑  收藏  举报