Hadoop基础-MapReduce的Join操作

                  Hadoop基础-MapReduce的Join操作

                                    作者:尹正杰

版权声明:原创作品,谢绝转载!否则将追究法律责任。

 

 

 

一.连接操作Map端Join(适合处理小表+大表的情况)

1    no001    12.3    7
2    no002    18.8    4
3    no003    20.0    3
4    no004    50.0    7
5    no005    23.1    2
6    no006    39.0    3
7    no007    5.0    2
8    no008    6.0    1
orders.txt 文件内容
1    linghunbaiduren
2    yinzhengjie
3    alex
4    linhaifeng
5    wupeiqi
6    xupeicheng
7    changqiling
8    laowang
customers.txt 文件内容

1>.MapJoinMapper.java 文件内容

 1 /*
 2 @author :yinzhengjie
 3 Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E8%BF%9B%E9%98%B6%E4%B9%8B%E8%B7%AF/
 4 EMAIL:y1053419035@qq.com
 5 */
 6 package cn.org.yinzhengjie.join.map;
 7 
 8 import org.apache.hadoop.conf.Configuration;
 9 import org.apache.hadoop.fs.FSDataInputStream;
10 import org.apache.hadoop.fs.FileSystem;
11 import org.apache.hadoop.fs.Path;
12 import org.apache.hadoop.io.IntWritable;
13 import org.apache.hadoop.io.LongWritable;
14 import org.apache.hadoop.io.NullWritable;
15 import org.apache.hadoop.io.Text;
16 import org.apache.hadoop.mapreduce.Mapper;
17 
18 import java.io.BufferedReader;
19 import java.io.IOException;
20 import java.io.InputStreamReader;
21 import java.util.HashMap;
22 import java.util.Map;
23 
24 
25 /**
26  * 输出KeyValue
27  * key是组合后的数据
28  * value空
29  *
30  */
31 public class MapJoinMapper extends Mapper<LongWritable,Text,Text,NullWritable> {
32 
33     Map<Integer,String> map = new HashMap<Integer, String>();
34 
35     
36     /**
37     *
38     *setup方法是在map方法之前执行,它也是map方法的初始化操作.
39     *
40     */
41     @Override
42     protected void setup(Context context) throws IOException, InterruptedException {
43         //通过上下文,得到conf
44         Configuration conf = context.getConfiguration();
45         //通过conf获取自定义key
46         String file = conf.get("customer.file");
47         //读取customer数据
48         FileSystem fs = FileSystem.get(conf);
49         FSDataInputStream fis = fs.open(new Path(file));
50         InputStreamReader reader = new InputStreamReader(fis);
51         BufferedReader br = new BufferedReader(reader);
52         String line = null;
53         byte[] buf = new byte[1024];
54         while((line = br.readLine()) != null){
55             String[] arr = line.split("\t");
56             int id = Integer.parseInt(arr[0]);
57             String name = arr[1];
58             //1 tom
59             //2 tomas
60             map.put(id,name);
61         }
62     }
63 
64     /**
65      * 通过
66      * oid  orderno price   cid
67      * 8    no008    6.0        1
68      *
69      * 得到
70      * cid  cname   orderno price
71      * 1    tom     no008   6.0
72      */
73 
74     @Override
75     protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
76 
77         String line = value.toString();
78 
79         String[] arr = line.split("\t");
80 
81         String orderno = arr[1];
82         String price = arr[2];
83         int cid = Integer.parseInt(arr[3]);
84 
85         String name = map.get(cid);
86         //拼串操作
87         String outKey = cid + "\t" + name + "\t" + orderno + "\t" + price + "\t";
88         //
89         context.write(new Text(outKey), NullWritable.get());
90     }
91 }

2>.MapJoinApp.java 文件内容

 1 /*
 2 @author :yinzhengjie
 3 Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E8%BF%9B%E9%98%B6%E4%B9%8B%E8%B7%AF/
 4 EMAIL:y1053419035@qq.com
 5 */
 6 package cn.org.yinzhengjie.join.map;
 7 
 8 import org.apache.hadoop.conf.Configuration;
 9 import org.apache.hadoop.fs.FileSystem;
10 import org.apache.hadoop.fs.Path;
11 import org.apache.hadoop.io.NullWritable;
12 import org.apache.hadoop.io.Text;
13 import org.apache.hadoop.mapreduce.Job;
14 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
15 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
16 
17 public class MapJoinApp {
18 
19     public static void main(String[] args) throws Exception {
20         Configuration conf = new Configuration();
21         //自定义一个变量名"customer.file",后面的文件是其具体的值,这里设置后可以在Mapper端通过get方法获取改变量的值。
22         conf.set("customer.file", "D:\\10.Java\\IDE\\yhinzhengjieData\\customers.txt");
23         conf.set("fs.defaultFS","file:///");
24         FileSystem fs = FileSystem.get(conf);
25         Job job = Job.getInstance(conf);
26         job.setJarByClass(MapJoinApp.class);
27         job.setJobName("Map-Join");
28         job.setMapperClass(MapJoinMapper.class);
29         job.setOutputKeyClass(Text.class);
30         job.setOutputValueClass(NullWritable.class);
31         FileInputFormat.addInputPath(job,new Path("D:\\10.Java\\IDE\\yhinzhengjieData\\orders.txt"));
32         Path outPath = new Path("D:\\10.Java\\IDE\\yhinzhengjieData\\out");
33         if (fs.exists(outPath)){
34             fs.delete(outPath);
35         }
36         FileOutputFormat.setOutputPath(job,outPath);
37         job.waitForCompletion(true);
38     }
39 }

3>.验证结果是否正确

 

二.连接操作Reduce端Join之组合Key实现(适合处理大表+大表的情况)

1    no001    12.3    7
2    no002    18.8    4
3    no003    20.0    3
4    no004    50.0    7
5    no005    23.1    2
6    no006    39.0    3
7    no007    5.0    2
8    no008    6.0    1
orders.txt 文件内容
1    linghunbaiduren
2    yinzhengjie
3    alex
4    linhaifeng
5    wupeiqi
6    xupeicheng
7    changqiling
8    laowang
customers.txt 文件内容

  以上两个文件的指定路径如下:(输入路径)

 1 /*
 2 @author :yinzhengjie
 3 Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E8%BF%9B%E9%98%B6%E4%B9%8B%E8%B7%AF/
 4 EMAIL:y1053419035@qq.com
 5 */
 6 package cn.org.yinzhengjie.join.reduce;
 7 
 8 import org.apache.hadoop.io.WritableComparable;
 9 
10 import java.io.DataInput;
11 import java.io.DataOutput;
12 import java.io.IOException;
13 
14 public class CompKey implements WritableComparable<CompKey> {
15     //定义客户id
16     private int cid;
17     //定义标识
18     private int flag;
19 
20     public int compareTo(CompKey o) {
21         //如果cid相等
22         if (this.getCid() == o.getCid()) {
23             //比较flag
24             return this.getFlag() - o.getFlag();
25         }
26         return this.getCid() - o.getCid();
27     }
28 
29     //定义序列化
30     public void write(DataOutput out) throws IOException {
31         out.writeInt(cid);
32         out.writeInt(flag);
33     }
34 
35     //定义反序列化
36     public void readFields(DataInput in) throws IOException {
37         cid = in.readInt();
38         flag = in.readInt();
39     }
40 
41     public int getCid() {
42         return cid;
43     }
44 
45     public void setCid(int cid) {
46         this.cid = cid;
47     }
48 
49     public int getFlag() {
50         return flag;
51     }
52 
53     public void setFlag(int flag) {
54         this.flag = flag;
55     }
56 
57     @Override
58     public String toString() {
59         return cid + "," + flag;
60     }
61 }
CompKey.java(组合Key实现)
 1 /*
 2 @author :yinzhengjie
 3 Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E8%BF%9B%E9%98%B6%E4%B9%8B%E8%B7%AF/
 4 EMAIL:y1053419035@qq.com
 5 */
 6 package cn.org.yinzhengjie.join.reduce;
 7 
 8 import org.apache.hadoop.io.WritableComparable;
 9 import org.apache.hadoop.io.WritableComparator;
10 
11 public class MyGroupingComparator extends WritableComparator {
12 
13     public MyGroupingComparator() {
14         super(CompKey.class, true);
15     }
16 
17     @Override
18     public int compare(WritableComparable a, WritableComparable b) {
19 
20         CompKey ck1 = (CompKey) a;
21         CompKey ck2 = (CompKey) b;
22 
23         int cid1 = ck1.getCid();
24         int cid2 = ck2.getCid();
25 
26 
27         return cid1 - cid2;
28     }
29 }
MyGroupingComparator.java (分组对比器实现)
 1 /*
 2 @author :yinzhengjie
 3 Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E8%BF%9B%E9%98%B6%E4%B9%8B%E8%B7%AF/
 4 EMAIL:y1053419035@qq.com
 5 */
 6 package cn.org.yinzhengjie.join.reduce;
 7 
 8 import org.apache.hadoop.io.LongWritable;
 9 import org.apache.hadoop.io.Text;
10 import org.apache.hadoop.mapreduce.InputSplit;
11 import org.apache.hadoop.mapreduce.Mapper;
12 import org.apache.hadoop.mapreduce.lib.input.FileSplit;
13 
14 import java.io.IOException;
15 
16 public class ReduceJoinMapper extends Mapper<LongWritable, Text, CompKey, Text> {
17 
18     String fileName;
19 
20     @Override
21     protected void setup(Context context) throws IOException, InterruptedException {
22         //得到输入切片
23         InputSplit split = context.getInputSplit();
24         FileSplit fileSplit = (FileSplit) split;
25 
26         //得到切片文件名或路径
27         fileName = fileSplit.getPath().getName();
28     }
29 
30     @Override
31     protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
32 
33         String line = value.toString();
34             String[] arr = line.split("\t");
35 
36             //判断文件是否包含"customers"。
37             if (fileName.contains("customers")) {
38                 int cid = Integer.parseInt(arr[0]);
39                 CompKey ck = new CompKey();
40                 ck.setCid(cid);
41                 ck.setFlag(0);
42                 context.write(ck, value);
43             } else {
44                 int cid = Integer.parseInt(arr[3]);
45                 CompKey ck = new CompKey();
46                 ck.setCid(cid);
47                 ck.setFlag(1);
48                 context.write(ck, value);
49         }
50     }
51 }
ReduceJoinMapper.java 文件内容
 1 /*
 2 @author :yinzhengjie
 3 Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E8%BF%9B%E9%98%B6%E4%B9%8B%E8%B7%AF/
 4 EMAIL:y1053419035@qq.com
 5 */
 6 package cn.org.yinzhengjie.join.reduce;
 7 
 8 import org.apache.hadoop.io.NullWritable;
 9 import org.apache.hadoop.io.Text;
10 import org.apache.hadoop.mapreduce.Reducer;
11 
12 import java.io.IOException;
13 import java.util.Iterator;
14 
15 public class ReduceJoinReducer extends Reducer<CompKey, Text, Text, NullWritable> {
16 
17 
18     /**
19      * 通过
20      * oid  orderno price   cid
21      * 8    no008    6.0        1
22      * <p>
23      * 得到
24      * cid  cname   orderno price
25      * 1    tom     no008   6.0
26      */
27     @Override
28     protected void reduce(CompKey key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
29 
30         //初始化迭代器
31         Iterator<Text> it = values.iterator();
32 
33         //将while指针指向第一条之后
34         String cust = it.next().toString();
35 
36         //继上一条之后读取
37         while(it.hasNext()){
38             String[] arr = it.next().toString().split("\t");
39             String orderno = arr[1];
40             String price = arr[2];
41             String newLine = cust.toString() + "\t" + orderno + "\t" + price;
42             context.write(new Text(newLine), NullWritable.get());
43 
44         }
45     }
46 }
ReduceJoinReducer.java 文件内容
 1 /*
 2 @author :yinzhengjie
 3 Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E8%BF%9B%E9%98%B6%E4%B9%8B%E8%B7%AF/
 4 EMAIL:y1053419035@qq.com
 5 */
 6 package cn.org.yinzhengjie.join.reduce;
 7 
 8 import org.apache.hadoop.conf.Configuration;
 9 import org.apache.hadoop.fs.FileSystem;
10 import org.apache.hadoop.fs.Path;
11 import org.apache.hadoop.io.NullWritable;
12 import org.apache.hadoop.io.Text;
13 import org.apache.hadoop.mapreduce.Job;
14 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
15 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
16 
17 public class ReduceJoinApp {
18 
19 
20     public static void main(String[] args) throws Exception {
21         Configuration conf = new Configuration();
22         conf.set("fs.defaultFS","file:///");
23         FileSystem fs = FileSystem.get(conf);
24         Job job = Job.getInstance(conf);
25         job.setJarByClass(ReduceJoinApp.class);
26         job.setJobName("Reduce-Join");
27         job.setMapperClass(ReduceJoinMapper.class);
28         job.setReducerClass(ReduceJoinReducer.class);
29         job.setGroupingComparatorClass(MyGroupingComparator.class);
30         //map的输出k-v
31         job.setMapOutputKeyClass(CompKey.class);
32         job.setMapOutputValueClass(Text.class);
33 
34         //reduce的k-v
35         job.setOutputKeyClass(Text.class);
36         job.setOutputValueClass(NullWritable.class);
37 
38         //指定输入的文件路径
39         FileInputFormat.addInputPath(job,new Path("D:\\10.Java\\IDE\\yhinzhengjieData\\input\\"));
40         //指定输出的文件路径
41         Path outPath = new Path("D:\\10.Java\\IDE\\yhinzhengjieData\\output");
42         if (fs.exists(outPath)){
43             fs.delete(outPath);
44         }
45         FileOutputFormat.setOutputPath(job,outPath);
46 
47         job.setNumReduceTasks(2);
48         job.waitForCompletion(true);
49     }
50 }
ReduceJoinApp.java 文件内容

  以上代码执行结果如下:(输出路径)

 

posted @ 2018-06-30 11:40  尹正杰  阅读(375)  评论(0编辑  收藏  举报