Hadoop生态圈-使用MapReduce处理HBase数据

                      Hadoop生态圈-使用MapReduce处理HBase数据

                                              作者:尹正杰

版权声明:原创作品,谢绝转载!否则将追究法律责任。

 

 

 

 

一.对HBase表中数据进行单词统计(TableInputFormat)

 1>.准备环境

create_namespace 'yinzhengjie'
create 'yinzhengjie:WordCount','f1','f2'
put 'yinzhengjie:WordCount', 'row1', 'f1:line', 'hello wold tom how are you'
put 'yinzhengjie:WordCount', 'row2', 'f1:line', 'hello hello hello tom'
put 'yinzhengjie:WordCount', 'row2', 'f2:line', 'hello hello tomas'
scan 'yinzhengjie:WordCount'

 

2>.编写Map端代码

 1 /*
 2 @author :yinzhengjie
 3 Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E7%94%9F%E6%80%81%E5%9C%88/
 4 EMAIL:y1053419035@qq.com
 5 */
 6 package cn.org.yinzhengjie.hbase.tableinput;
 7 
 8 import org.apache.hadoop.hbase.Cell;
 9 import org.apache.hadoop.hbase.CellUtil;
10 import org.apache.hadoop.hbase.client.Result;
11 import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
12 import org.apache.hadoop.hbase.util.Bytes;
13 import org.apache.hadoop.io.IntWritable;
14 import org.apache.hadoop.io.Text;
15 import org.apache.hadoop.mapreduce.Mapper;
16 
17 import java.io.IOException;
18 import java.util.List;
19 
20 /**
21  * 使用hbase表做wordcount
22  */
23 public class TableInputMapper extends Mapper<ImmutableBytesWritable,Result, Text,IntWritable> {
24 
25     /**
26      *
27      * @param key           : 可以理解为HBase中的rowkey
28      * @param value         :  输入端的结果集
29      * @param context       : 和reduce端进行数据传输的上下文
30      */
31     @Override
32     protected void map(ImmutableBytesWritable key, Result value, Context context) throws IOException, InterruptedException {
33         //将输入端的结果集编程一个集合
34         List<Cell> cells = value.listCells();
35         //遍历集合,拿到每个元素的值,然后在按照空格进行切分,并将处理的结果传给reduce端
36         for (Cell cell : cells) {
37             String line = Bytes.toString(CellUtil.cloneValue(cell));
38             String[] arr = line.split(" ");
39             for(String word : arr){
40                 context.write(new Text(word), new IntWritable(1));
41             }
42         }
43     }
44 }

3>.编写Reducer端代码

 1 /*
 2 @author :yinzhengjie
 3 Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E7%94%9F%E6%80%81%E5%9C%88/
 4 EMAIL:y1053419035@qq.com
 5 */
 6 package cn.org.yinzhengjie.hbase.tableinput;
 7 
 8 import org.apache.hadoop.io.IntWritable;
 9 import org.apache.hadoop.io.Text;
10 import org.apache.hadoop.mapreduce.Reducer;
11 
12 import java.io.IOException;
13 
14 public class TableInputReducer extends Reducer<Text,IntWritable,Text,IntWritable> {
15 
16     @Override
17     protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
18         int sum = 0;
19         for (IntWritable value : values) {
20             sum += value.get();
21         }
22         context.write(key,new IntWritable(sum));
23     }
24 }

4>.编写主程序代码

 1 /*
 2 @author :yinzhengjie
 3 Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E7%94%9F%E6%80%81%E5%9C%88/
 4 EMAIL:y1053419035@qq.com
 5 */
 6 package cn.org.yinzhengjie.hbase.tableinput;
 7 
 8 import org.apache.hadoop.conf.Configuration;
 9 import org.apache.hadoop.fs.Path;
10 import org.apache.hadoop.hbase.HBaseConfiguration;
11 import org.apache.hadoop.hbase.mapreduce.TableInputFormat;
12 import org.apache.hadoop.io.IntWritable;
13 import org.apache.hadoop.io.Text;
14 import org.apache.hadoop.mapreduce.Job;
15 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
16 
17 import static org.apache.hadoop.hbase.mapreduce.TableInputFormat.INPUT_TABLE;
18 import static org.apache.hadoop.hbase.mapreduce.TableInputFormat.SCAN_COLUMN_FAMILY;
19 
20 public class App {
21 
22     public static void main(String[] args) throws Exception {
23         //创建一个conf对象
24         Configuration conf = HBaseConfiguration.create();
25         //设置输入表,即指定源数据来自HBase的那个表
26         conf.set(INPUT_TABLE,"yinzhengjie:WordCount");
27         //设置扫描列族
28         conf.set(SCAN_COLUMN_FAMILY,"f1");
29         //创建一个任务对象job,别忘记把conf传进去哟!
30         Job job = Job.getInstance(conf);
31         //给任务起个名字
32         job.setJobName("Table WC");
33         //指定main函数所在的类,也就是当前所在的类名
34         job.setJarByClass(App.class);
35         //设置自定义的Map程序和Reduce程序
36         job.setMapperClass(TableInputMapper.class);
37         job.setReducerClass(TableInputReducer.class);
38         //设置输入格式
39         job.setInputFormatClass(TableInputFormat.class);
40         //设置输出路径
41         FileOutputFormat.setOutputPath(job,new Path("file:///D:\\BigData\\yinzhengjieData\\out"));
42         //设置输出k-v
43         job.setOutputKeyClass(Text.class);
44         job.setOutputValueClass(IntWritable.class);
45         //等待任务执行结束
46         job.waitForCompletion(true);
47     }
48 }

5>.查看测试结果

 

二.将本地文件进行单词统计的结果输出到HBase中(TableOutputFormat)

 1>.准备环境

list
create 'yinzhengjie:WordCount2','f1','f2'
list
desc 'yinzhengjie:WordCount2'
scan 'yinzhengjie:WordCount2'

 

2>.编写Map端代码

 1 /*
 2 @author :yinzhengjie
 3 Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E7%94%9F%E6%80%81%E5%9C%88/
 4 EMAIL:y1053419035@qq.com
 5 */
 6 package cn.org.yinzhengjie.hbase.tableoutput;
 7 
 8 import org.apache.hadoop.io.IntWritable;
 9 import org.apache.hadoop.io.LongWritable;
10 import org.apache.hadoop.io.Text;
11 import org.apache.hadoop.mapreduce.Mapper;
12 import java.io.IOException;
13 
14 public class TableOutputMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
15     @Override
16     protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
17         //得到一行数据
18         String line = value.toString();
19         //按空格进行切分
20         String[] arr = line.split(" ");
21         //遍历切分后的数据,并将每个单词数的赋初始值为1
22         for (String word : arr){
23             context.write(new Text(word),new IntWritable(1));
24         }
25     }
26 }

3>.编写Reducer端代码

 1 /*
 2 @author :yinzhengjie
 3 Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E7%94%9F%E6%80%81%E5%9C%88/
 4 EMAIL:y1053419035@qq.com
 5 */
 6 package cn.org.yinzhengjie.hbase.tableoutput;
 7 
 8 import org.apache.hadoop.hbase.client.Put;
 9 import org.apache.hadoop.hbase.util.Bytes;
10 import org.apache.hadoop.io.IntWritable;
11 import org.apache.hadoop.io.NullWritable;
12 import org.apache.hadoop.io.Text;
13 import org.apache.hadoop.mapreduce.Reducer;
14 import java.io.IOException;
15 
16 public class TableOutputReducer extends Reducer<Text,IntWritable,NullWritable,Put> {
17     @Override
18     protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
19         //对同一个key的出现的次数进行相加操作,算出一个单词出现的次数
20         int sum = 0;
21         for (IntWritable value : values) {
22             sum += value.get();
23         }
24 
25         /**
26          *      注意,“key.toString().length() > 0”的目的是排除空串,所谓空转就是两个连续的空格链接在一起,
27          * 比如“hello  world”,有两个空格,如果以空格切分的话,由于有两个空格,因此hello和world之间会被切割
28          * 两次,这也就意味着会出现三个对象,即"hello","","world"。由于这个空串("")的长度为0,因此,如果我
29          * 们指向统计单词的个数,只需要让长度大于0,就可以轻松过滤出“hello”和“world”两个参数啦!
30          */
31         if(key.toString().length() > 0){
32             Put put = new Put(Bytes.toBytes(key.toString()));
33             //添加每列的数据
34             put.addColumn(Bytes.toBytes("f1"),Bytes.toBytes("count"),Bytes.toBytes(sum+""));
35             context.write(NullWritable.get(),put);
36         }
37     }
38 }

4>.编写主程序代码

 1 /*
 2 @author :yinzhengjie
 3 Blog:http://www.cnblogs.com/yinzhengjie/tag/Hadoop%E7%94%9F%E6%80%81%E5%9C%88/
 4 EMAIL:y1053419035@qq.com
 5 */
 6 package cn.org.yinzhengjie.hbase.tableoutput;
 7 
 8 import org.apache.hadoop.conf.Configuration;
 9 import org.apache.hadoop.fs.Path;
10 import org.apache.hadoop.hbase.HBaseConfiguration;
11 import org.apache.hadoop.hbase.client.Put;
12 import org.apache.hadoop.hbase.mapreduce.TableOutputFormat;
13 import org.apache.hadoop.io.IntWritable;
14 import org.apache.hadoop.io.NullWritable;
15 import org.apache.hadoop.io.Text;
16 import org.apache.hadoop.mapreduce.Job;
17 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
18 
19 public class App {
20     public static void main(String[] args) throws Exception {
21         //创建一个conf对象
22         Configuration conf = HBaseConfiguration.create();
23         //设置输出表,即指定将数据存储在哪个HBase表
24         conf.set(TableOutputFormat.OUTPUT_TABLE,"yinzhengjie:WordCount2");
25         //创建一个任务对象job,别忘记把conf传进去哟!
26         Job job = Job.getInstance(conf);
27         //给任务起个名字
28         job.setJobName("Table WordCount2");
29         //指定main函数所在的类,也就是当前所在的类名
30         job.setJarByClass(App.class);
31         //设置自定义的Map程序和Reduce程序
32         job.setMapperClass(TableOutputMapper.class);
33         job.setReducerClass(TableOutputReducer.class);
34         //设置输出格式
35         job.setOutputFormatClass(TableOutputFormat.class);
36         //设置输入路径
37         FileInputFormat.addInputPath(job,new Path("file:///D:\\BigData\\yinzhengjieData\\word.txt"));
38         //设置输出k-v
39         job.setOutputKeyClass(NullWritable.class);
40         job.setOutputValueClass(Put.class);
41         //设置map端输出k-v
42         job.setMapOutputKeyClass(Text.class);
43         job.setMapOutputValueClass(IntWritable.class);
44         //等待任务执行结束
45         job.waitForCompletion(true);
46     }
47 }

5>.查看测试结果(需要执行主代码程序)

hbase(main):015:0* scan 'yinzhengjie:WordCount2'
ROW                                                                  COLUMN+CELL                                                                                                                                                                                              
0 row(s) in 0.0270 seconds

hbase(main):016:0> scan 'yinzhengjie:WordCount2'
ROW                                                                  COLUMN+CELL                                                                                                                                                                                              
 Apache                                                              column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 Hadoop                                                              column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 It                                                                  column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 Rather                                                              column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 The                                                                 column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 a                                                                   column=f1:count, timestamp=1528720507565, value=3                                                                                                                                                        
 across                                                              column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 allows                                                              column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 and                                                                 column=f1:count, timestamp=1528720507565, value=2                                                                                                                                                        
 application                                                         column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 at                                                                  column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 be                                                                  column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 cluster                                                             column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 clusters                                                            column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 computation                                                         column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 computers                                                           column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 computers,                                                          column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 data                                                                column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 deliver                                                             column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 delivering                                                          column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 designed                                                            column=f1:count, timestamp=1528720507565, value=2                                                                                                                                                        
 detect                                                              column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 distributed                                                         column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 each                                                                column=f1:count, timestamp=1528720507565, value=2                                                                                                                                                        
 failures                                                            column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 failures.                                                           column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 for                                                                 column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 framework                                                           column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 from                                                                column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 handle                                                              column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 hardware                                                            column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 high-availability,                                                  column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 highly-available                                                    column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 is                                                                  column=f1:count, timestamp=1528720507565, value=3                                                                                                                                                        
 itself                                                              column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 large                                                               column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 layer,                                                              column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 library                                                             column=f1:count, timestamp=1528720507565, value=2                                                                                                                                                        
 local                                                               column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 machines,                                                           column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 may                                                                 column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 models.                                                             column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 of                                                                  column=f1:count, timestamp=1528720507565, value=6                                                                                                                                                        
 offering                                                            column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 on                                                                  column=f1:count, timestamp=1528720507565, value=2                                                                                                                                                        
 processing                                                          column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 programming                                                         column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 prone                                                               column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 rely                                                                column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 scale                                                               column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 servers                                                             column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 service                                                             column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 sets                                                                column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 simple                                                              column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 single                                                              column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 so                                                                  column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 software                                                            column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 storage.                                                            column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 than                                                                column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 that                                                                column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 the                                                                 column=f1:count, timestamp=1528720507565, value=3                                                                                                                                                        
 thousands                                                           column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 to                                                                  column=f1:count, timestamp=1528720507565, value=5                                                                                                                                                        
 top                                                                 column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 up                                                                  column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 using                                                               column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
 which                                                               column=f1:count, timestamp=1528720507565, value=1                                                                                                                                                        
67 row(s) in 0.1600 seconds

hbase(main):017:0> 
hbase(main):016:0> scan 'yinzhengjie:WordCount2'

 

posted @ 2018-06-12 09:13  尹正杰  阅读(387)  评论(0编辑  收藏  举报