Hadoop生态圈-Hive快速入门篇之HQL的基础语法

             Hadoop生态圈-Hive快速入门篇之HQL的基础语法

                                     作者:尹正杰

版权声明:原创作品,谢绝转载!否则将追究法律责任。

 

 

  本篇博客的重点是介绍Hive中常见的数据类型,DDL数据定义,DML数据操作以及常用的查询操作。如果你没有hive的安装环境的话,可以参考我之前分析搭建hive的笔记:https://www.cnblogs.com/yinzhengjie/p/9154324.html

 

一.Hive常见的属性配置

1>.Hive数据仓库位置配置

1>.Default数据仓库的最原始位置在“hdfs:/user/hive/warehouse/ ”路径下
2>.在仓库目录下,没有对默认的数据库default的创建文件夹(也就是说,如果有表属于default数据库,那么默认会存放在根路径下)。如果某张表属于default数据库,直接在数据仓库目录下创建一个文件夹
3>.修改default数据仓库原始位置(将默认配置文件“hive-defalut.xml.template”如下配置信息拷贝到hive-site.xml文件中
      <property>
        <name>hive.metastore.warehouse.dir</name>
        <value>/user/hive/warehouse</value>
        <description>location of default database for the warehouse</description>
      </property>

2>.配置当前数据库,以及查询表的头信息配置

在hive-site.xml文件中添加如下配置信息,即可以实现显示当前数据库,以及查询表的头信息配置。配置之后需要重启hive客户端
  <property>
    <name>hive.cli.print.header</name>
    <value>true</value>
    <description>Whether to print the names of the columns in query output.</description>
  </property>
  
  <property>
    <name>hive.cli.print.current.db</name>
    <value>true</value>
    <description>Whether to include the current database in the Hive prompt.</description>
  </property>

  配置以上设置后,重启hive客户端,你会发现多了两个功能,可以查看表头以及当前所在的数据库:

3>.Hive运行日志信息配置

1>.Hive的log默认存放在"/tmp/atguigu/hive.log"目录下(当前用户名下)。

2>.修改hive的log存放日志到"/home/yinzhengjie/hive/logs",我们可以修改hive-log4j2.properties进行配置,具体操作如下:
[yinzhengjie@s101 ~]$ cd /soft/hive/conf/
[yinzhengjie@s101 conf]$ 
[yinzhengjie@s101 conf]$ cp hive-log4j2.properties.template hive-log4j2.properties                        #拷贝模板文件生成配置文件
[yinzhengjie@s101 conf]$ grep property.hive.log.dir  hive-log4j2.properties  | grep -v ^#                
property.hive.log.dir = /home/yinzhengjie/hive/logs                                                        #指定log的存放位置
[yinzhengjie@s101 conf]$ 
[yinzhengjie@s101 conf]$ ll /home/yinzhengjie/hive/logs/hive.log 
-rw-rw-r-- 1 yinzhengjie yinzhengjie 4265 Aug  5 21:20 /home/yinzhengjie/hive/logs/hive.log                #重启hive,查看日志文件中的内容
[yinzhengjie@s101 conf]$ 

4>.查看参数配置方式

1>.查看当前的所有配置信息(hive (yinzhengjie)> set;)
    配置文件方式:
        默认配置文件:            hive-default.xml
        用户自定义配置文件:    hive-site.xml
        注意:用户自定义配置会覆盖默认配置。另外,Hive也会读入Hadoop的配置,因为Hive是作为Hadoop的客户端启用的,Hive的配置会覆盖Hadoop的配置。配置文件的设定对本机启动的所有Hive进程都有效。

        
2>.参数的配置三种方式以及优先级介绍
    启动命令行时声明参数方式:
        [yinzhengjie@s101 ~]$ hive -hiveconf mapred.reduce.tasks=10
        SLF4J: Class path contains multiple SLF4J bindings.
        SLF4J: Found binding in [jar:file:/soft/apache-hive-2.1.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
        SLF4J: Found binding in [jar:file:/soft/hbase-1.2.6/lib/phoenix-4.10.0-HBase-1.2-client.jar!/org/slf4j/impl/StaticLoggerBinder.class]
        SLF4J: Found binding in [jar:file:/soft/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
        SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.

        Logging initialized using configuration in file:/soft/apache-hive-2.1.1-bin/conf/hive-log4j2.properties Async: true
        Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
        hive (default)> set mapred.reduce.tasks;
        mapred.reduce.tasks=10
        hive (default)> quit;
        [yinzhengjie@s101 ~]$ 
        [yinzhengjie@s101 ~]$ hive
        SLF4J: Class path contains multiple SLF4J bindings.
        SLF4J: Found binding in [jar:file:/soft/apache-hive-2.1.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
        SLF4J: Found binding in [jar:file:/soft/hbase-1.2.6/lib/phoenix-4.10.0-HBase-1.2-client.jar!/org/slf4j/impl/StaticLoggerBinder.class]
        SLF4J: Found binding in [jar:file:/soft/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
        SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.

        Logging initialized using configuration in file:/soft/apache-hive-2.1.1-bin/conf/hive-log4j2.properties Async: true
        Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
        hive (default)> set mapred.reduce.tasks;
        mapred.reduce.tasks=-1
        hive (default)> exit;
        [yinzhengjie@s101 ~]$ 
    
    启动命令行后参数声明方式:
        [yinzhengjie@s101 ~]$ hive
        SLF4J: Class path contains multiple SLF4J bindings.
        SLF4J: Found binding in [jar:file:/soft/apache-hive-2.1.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
        SLF4J: Found binding in [jar:file:/soft/hbase-1.2.6/lib/phoenix-4.10.0-HBase-1.2-client.jar!/org/slf4j/impl/StaticLoggerBinder.class]
        SLF4J: Found binding in [jar:file:/soft/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
        SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.

        Logging initialized using configuration in file:/soft/apache-hive-2.1.1-bin/conf/hive-log4j2.properties Async: true
        Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
        hive (default)> set mapred.reduce.tasks;
        mapred.reduce.tasks=-1
        hive (default)> set mapred.reduce.tasks=100;
        hive (default)> set mapred.reduce.tasks;
        mapred.reduce.tasks=100
        hive (default)> quit;
        [yinzhengjie@s101 ~]$ 
    
    三种方式优先级温馨提示:
        以上三种设定方式的优先级依次递增。即"配置文件"<"启动命令行时"<"启动命令行后"。注意某些系统级的参数,例如log4j相关的设定,必须用前两种方式设定,因为那些参数的读取在会话建立以前已经完成了。

 

二.Hive数据类型

1>.基本数据类型

  对于Hive的String类型相当于数据库的varchar类型,该类型是一个可变的字符串,不过它不能声明其中最多能存储多少个字符,理论上它可以存储2GB的字符数。

Hive数据类型

Java数据类型

长度

例子

TINYINT

byte

1byte有符号整数

20

SMALINT

short

2byte有符号整数

20

INT

int

4byte有符号整数

20

BIGINT

long

8byte有符号整数

20

BOOLEAN

boolean

布尔类型,true或者false

TRUE  FALSE

FLOAT

float

单精度浮点数

3.14159

DOUBLE

double

双精度浮点数

3.14159

STRING

string

字符系列。可以指定字符集。可以使用单引号或者双引号。

‘now is the time’ “for all good men”

TIMESTAMP

 

时间类型

 

BINARY

 

字节数组

 

2>.集合数据类型

  Hive有三种复杂数据类型ARRAY、MAP 和 STRUCT。ARRAY和MAP与Java中的Array和Map类似,而STRUCT与C语言中的Struct类似,它封装了一个命名字段集合,复杂数据类型允许任意层次的嵌套。

数据类型

描述

语法示例

STRUCT

和c语言中的struct类似,都可以通过“点”符号访问元素内容。例如,如果某个列的数据类型是STRUCT{first STRING, last STRING},那么第1个元素可以通过字段.first来引用。

struct()

MAP

MAP是一组键-值对元组集合,使用数组表示法可以访问数据。例如,如果某个列的数据类型是MAP,其中键->值对是’first’->’John’和’last’->’Doe’,那么可以通过字段名[‘last’]获取最后一个元素

map()

ARRAY

数组是一组具有相同类型和名称的变量的集合。这些变量称为数组的元素,每个数组元素都有一个编号,编号从零开始。例如,数组值为[‘John’, ‘Doe’],那么第2个元素可以通过数组名[1]进行引用。

Array()

3>类型转化

   Hive的原子数据类型是可以进行隐式转换的,类似于Java的类型转换,例如某表达式使用INT类型,TINYINT会自动转换为INT类型,但是Hive不会进行反向转化,例如,某表达式使用TINYINT类型,INT不会自动转换为TINYINT类型,它会返回错误,除非使用CAST操作。隐式类型转换规则如下。

    第一:任何整数类型都可以隐式地转换为一个范围更广的类型,如TINYINT可以转换成INT,INT可以转换成BIGINT。

    第二:所有整数类型、FLOAT和STRING类型都可以隐式地转换成DOUBLE。

    第三:TINYINT、SMALLINT、INT都可以转换为FLOAT。

    第四:BOOLEAN类型不可以转换为任何其它的类型。

  温馨提示:可以使用CAST操作显示进行数据类型转换,例如CAST('1' AS INT)将把字符串'1' 转换成整数1;如果强制类型转换失败,如执行CAST('X' AS INT),表达式返回空值 NULL。

4>.小试牛刀

  假设某表有如下一行,我们用JSON格式来表示其数据结构。在Hive下访问的格式为:

  基于上述数据结构,我们在Hive里创建对应的表,并导入数据。创建本地测试文件test.txt内容如下:(注意,MAP,STRUCT和ARRAY里的元素间关系都可以用同一个字符表示,这里用“_”。

[yinzhengjie@s101 download]$ cat /home/yinzhengjie/download/test.txt 
漩涡鸣人,我爱罗_佐助,漩涡博人:18_漩涡向日葵:16,一乐拉面附近_木业忍者村
宇智波富岳,宇智波美琴_志村团藏,宇智波鼬:28_宇智波佐助:19,木叶警务部_木业忍者村
[yinzhengjie@s101 download]$ 

  Hive上创建测试表test,如下:

create table test(
    name string,
    friends array<string>,
    children map<string, int>,
    address struct<street:string, city:string>
)
row format delimited fields terminated by ','
collection items terminated by '_'
map keys terminated by ':'
lines terminated by '\n';

  导入文本数据到测试表:

hive (yinzhengjie)>  load data local inpath '/home/yinzhengjie/download/test.txt' into table test;
Loading data to table yinzhengjie.test
OK
Time taken: 0.335 seconds
hive (yinzhengjie)> select * from test;
OK
test.name    test.friends    test.children    test.address
漩涡鸣人    ["我爱罗","佐助"]    {"漩涡博人":18,"漩涡向日葵":16}    {"street":"一乐拉面附近","city":"木业忍者村"}
宇智波富岳    ["宇智波美琴","志村团藏"]    {"宇智波鼬":28,"宇智波佐助":19}    {"street":"木叶警务部","city":"木业忍者村"}
Time taken: 0.099 seconds, Fetched: 2 row(s)
hive (yinzhengjie)> 

  访问三种集合列里的数据,以下分别是ARRAY,MAP,STRUCT的访问方式:

hive (yinzhengjie)> select * from test;
OK
test.name    test.friends    test.children    test.address
漩涡鸣人    ["我爱罗","佐助"]    {"漩涡博人":18,"漩涡向日葵":16}    {"street":"一乐拉面附近","city":"木业忍者村"}
宇智波富岳    ["宇智波美琴","志村团藏"]    {"宇智波鼬":28,"宇智波佐助":19}    {"street":"木叶警务部","city":"木业忍者村"}
Time taken: 0.085 seconds, Fetched: 2 row(s)
hive (yinzhengjie)> select friends[0],children['漩涡博人'],address.city from test where name="漩涡鸣人";
OK
_c0    _c1    city
我爱罗    18    木业忍者村
Time taken: 0.096 seconds, Fetched: 1 row(s)
hive (yinzhengjie)> select friends[1],children['漩涡向日葵'],address.city from test where name="漩涡鸣人";
OK
_c0    _c1    city
佐助    16    木业忍者村
Time taken: 0.1 seconds, Fetched: 1 row(s)
hive (yinzhengjie)> 

 

三.Hive的常用命令(HQL)用法展示

  温馨提示:在使用Hive交互命令或是执行HQL语句时都会启动Hive,而hive依赖于Hadoop的hdfs提供存储和MapReduce提供计算,因此在启动Hive之前,需要启动Hadoop集群哟。

[yinzhengjie@s101 ~]$ more `which xcall.sh`
#!/bin/bash
#@author :yinzhengjie
#blog:http://www.cnblogs.com/yinzhengjie
#EMAIL:y1053419035@qq.com


#判断用户是否传参
if [ $# -lt 1 ];then
        echo "请输入参数"
        exit
fi

#获取用户输入的命令
cmd=$@

for (( i=101;i<=105;i++ ))
do
        #使终端变绿色 
        tput setaf 2
        echo ============= s$i $cmd ============
        #使终端变回原来的颜色,即白灰色
        tput setaf 7
        #远程执行命令
        ssh s$i $cmd
        #判断命令是否执行成功
        if [ $? == 0 ];then
                echo "命令执行成功"
        fi
done
[yinzhengjie@s101 ~]$ 
查看集群的命令脚本([yinzhengjie@s101 ~]$ more `which xcall.sh`)
[yinzhengjie@s101 ~]$ more `which start-dfs.sh` | grep -v ^# | grep -v ^$
usage="Usage: start-dfs.sh [-upgrade|-rollback] [other options such as -clusterId]"
bin=`dirname "${BASH_SOURCE-$0}"`
bin=`cd "$bin"; pwd`
DEFAULT_LIBEXEC_DIR="$bin"/../libexec
HADOOP_LIBEXEC_DIR=${HADOOP_LIBEXEC_DIR:-$DEFAULT_LIBEXEC_DIR}
. $HADOOP_LIBEXEC_DIR/hdfs-config.sh
if [[ $# -ge 1 ]]; then
  startOpt="$1"
  shift
  case "$startOpt" in
    -upgrade)
      nameStartOpt="$startOpt"
    ;;
    -rollback)
      dataStartOpt="$startOpt"
    ;;
    *)
      echo $usage
      exit 1
    ;;
  esac
fi
nameStartOpt="$nameStartOpt $@"
NAMENODES=$($HADOOP_PREFIX/bin/hdfs getconf -namenodes)
echo "Starting namenodes on [$NAMENODES]"
"$HADOOP_PREFIX/sbin/hadoop-daemons.sh" \
  --config "$HADOOP_CONF_DIR" \
  --hostnames "$NAMENODES" \
  --script "$bin/hdfs" start namenode $nameStartOpt
if [ -n "$HADOOP_SECURE_DN_USER" ]; then
  echo \
    "Attempting to start secure cluster, skipping datanodes. " \
    "Run start-secure-dns.sh as root to complete startup."
else
  "$HADOOP_PREFIX/sbin/hadoop-daemons.sh" \
    --config "$HADOOP_CONF_DIR" \
    --script "$bin/hdfs" start datanode $dataStartOpt
fi
SECONDARY_NAMENODES=$($HADOOP_PREFIX/bin/hdfs getconf -secondarynamenodes 2>/dev/null)
if [ -n "$SECONDARY_NAMENODES" ]; then
  echo "Starting secondary namenodes [$SECONDARY_NAMENODES]"
  "$HADOOP_PREFIX/sbin/hadoop-daemons.sh" \
      --config "$HADOOP_CONF_DIR" \
      --hostnames "$SECONDARY_NAMENODES" \
      --script "$bin/hdfs" start secondarynamenode
fi
SHARED_EDITS_DIR=$($HADOOP_PREFIX/bin/hdfs getconf -confKey dfs.namenode.shared.edits.dir 2>&-)
case "$SHARED_EDITS_DIR" in
qjournal://*)
  JOURNAL_NODES=$(echo "$SHARED_EDITS_DIR" | sed 's,qjournal://\([^/]*\)/.*,\1,g; s/;/ /g; s/:[0-9]*//g')
  echo "Starting journal nodes [$JOURNAL_NODES]"
  "$HADOOP_PREFIX/sbin/hadoop-daemons.sh" \
      --config "$HADOOP_CONF_DIR" \
      --hostnames "$JOURNAL_NODES" \
      --script "$bin/hdfs" start journalnode ;;
esac
AUTOHA_ENABLED=$($HADOOP_PREFIX/bin/hdfs getconf -confKey dfs.ha.automatic-failover.enabled)
if [ "$(echo "$AUTOHA_ENABLED" | tr A-Z a-z)" = "true" ]; then
  echo "Starting ZK Failover Controllers on NN hosts [$NAMENODES]"
  "$HADOOP_PREFIX/sbin/hadoop-daemons.sh" \
    --config "$HADOOP_CONF_DIR" \
    --hostnames "$NAMENODES" \
    --script "$bin/hdfs" start zkfc
fi
[yinzhengjie@s101 ~]$
HDFS分布式文件系统启动脚本([yinzhengjie@s101 ~]$ more `which start-dfs.sh` | grep -v ^# | grep -v ^$)
[yinzhengjie@s101 ~]$ cat /soft/hadoop/sbin/start-yarn.sh | grep -v ^# | grep -v ^$
echo "starting yarn daemons"
bin=`dirname "${BASH_SOURCE-$0}"`
bin=`cd "$bin"; pwd`
DEFAULT_LIBEXEC_DIR="$bin"/../libexec
HADOOP_LIBEXEC_DIR=${HADOOP_LIBEXEC_DIR:-$DEFAULT_LIBEXEC_DIR}
. $HADOOP_LIBEXEC_DIR/yarn-config.sh
"$bin"/yarn-daemon.sh --config $YARN_CONF_DIR  start resourcemanager
"$bin"/yarn-daemons.sh --config $YARN_CONF_DIR  start nodemanager
[yinzhengjie@s101 ~]$
Yarn启动脚本([yinzhengjie@s101 ~]$ cat /soft/hadoop/sbin/start-yarn.sh | grep -v ^# | grep -v ^$)
[yinzhengjie@s101 ~]$ more `which xzk.sh`
#!/bin/bash
#@author :yinzhengjie
#blog:http://www.cnblogs.com/yinzhengjie
#EMAIL:y1053419035@qq.com

#判断用户是否传参
if [ $# -ne 1 ];then
    echo "无效参数,用法为: $0  {start|stop|restart|status}"
    exit
fi

#获取用户输入的命令
cmd=$1

#定义函数功能
function zookeeperManger(){
    case $cmd in
    start)
        echo "启动服务"        
        remoteExecution start
        ;;
    stop)
        echo "停止服务"
        remoteExecution stop
        ;;
    restart)
        echo "重启服务"
        remoteExecution restart
        ;;
    status)
        echo "查看状态"
        remoteExecution status
        ;;
    *)
        echo "无效参数,用法为: $0  {start|stop|restart|status}"
        ;;
    esac
}


#定义执行的命令
function remoteExecution(){
    for (( i=102 ; i<=104 ; i++ )) ; do
            tput setaf 2
            echo ========== s$i zkServer.sh  $1 ================
            tput setaf 9
            ssh s$i  "source /etc/profile ; zkServer.sh $1"
    done
}

#调用函数
zookeeperManger
[yinzhengjie@s101 ~]$ 
zookeeper启动脚本([yinzhengjie@s101 ~]$ more `which xzk.sh`)
[yinzhengjie@s101 ~]$ xzk.sh start
启动服务
========== s102 zkServer.sh start ================
ZooKeeper JMX enabled by default
Using config: /soft/zk/bin/../conf/zoo.cfg
Starting zookeeper ... STARTED
========== s103 zkServer.sh start ================
ZooKeeper JMX enabled by default
Starting zookeeper ... Using config: /soft/zk/bin/../conf/zoo.cfg
STARTED
========== s104 zkServer.sh start ================
ZooKeeper JMX enabled by default
Using config: /soft/zk/bin/../conf/zoo.cfg
Starting zookeeper ... STARTED
[yinzhengjie@s101 ~]$ 
[yinzhengjie@s101 ~]$ xcall.sh jps
============= s101 jps ============
6232 Jps
命令执行成功
============= s102 jps ============
4081 QuorumPeerMain
4110 Jps
命令执行成功
============= s103 jps ============
4044 QuorumPeerMain
4079 Jps
命令执行成功
============= s104 jps ============
4076 Jps
4047 QuorumPeerMain
命令执行成功
============= s105 jps ============
3383 Jps
命令执行成功
[yinzhengjie@s101 ~]$ 
启动zookeeper([yinzhengjie@s101 ~]$ xzk.sh start)
[yinzhengjie@s101 ~]$ start-dfs.sh 
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/soft/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/apache-hive-2.1.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
Starting namenodes on [s101 s105]
s101: starting namenode, logging to /soft/hadoop-2.7.3/logs/hadoop-yinzhengjie-namenode-s101.out
s105: starting namenode, logging to /soft/hadoop-2.7.3/logs/hadoop-yinzhengjie-namenode-s105.out
s103: starting datanode, logging to /soft/hadoop-2.7.3/logs/hadoop-yinzhengjie-datanode-s103.out
s102: starting datanode, logging to /soft/hadoop-2.7.3/logs/hadoop-yinzhengjie-datanode-s102.out
s104: starting datanode, logging to /soft/hadoop-2.7.3/logs/hadoop-yinzhengjie-datanode-s104.out
Starting journal nodes [s102 s103 s104]
s102: starting journalnode, logging to /soft/hadoop-2.7.3/logs/hadoop-yinzhengjie-journalnode-s102.out
s103: starting journalnode, logging to /soft/hadoop-2.7.3/logs/hadoop-yinzhengjie-journalnode-s103.out
s104: starting journalnode, logging to /soft/hadoop-2.7.3/logs/hadoop-yinzhengjie-journalnode-s104.out
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/soft/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/apache-hive-2.1.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
Starting ZK Failover Controllers on NN hosts [s101 s105]
s101: starting zkfc, logging to /soft/hadoop-2.7.3/logs/hadoop-yinzhengjie-zkfc-s101.out
s105: starting zkfc, logging to /soft/hadoop-2.7.3/logs/hadoop-yinzhengjie-zkfc-s105.out
[yinzhengjie@s101 ~]$ 
[yinzhengjie@s101 ~]$ 
[yinzhengjie@s101 ~]$ xcall.sh jps
============= s101 jps ============
6755 Jps
6380 NameNode
6685 DFSZKFailoverController
命令执行成功
============= s102 jps ============
4240 JournalNode
4081 QuorumPeerMain
4159 DataNode
4335 Jps
命令执行成功
============= s103 jps ============
4304 Jps
4130 DataNode
4211 JournalNode
4044 QuorumPeerMain
命令执行成功
============= s104 jps ============
4300 Jps
4125 DataNode
4047 QuorumPeerMain
4207 JournalNode
命令执行成功
============= s105 jps ============
3538 DFSZKFailoverController
3436 NameNode
3597 Jps
命令执行成功
[yinzhengjie@s101 ~]$ 
启动HDFS分布式文件系统([yinzhengjie@s101 ~]$ start-dfs.sh )
[yinzhengjie@s101 ~]$ start-yarn.sh 
starting yarn daemons
s101: starting resourcemanager, logging to /soft/hadoop-2.7.3/logs/yarn-yinzhengjie-resourcemanager-s101.out
s105: starting resourcemanager, logging to /soft/hadoop-2.7.3/logs/yarn-yinzhengjie-resourcemanager-s105.out
s103: starting nodemanager, logging to /soft/hadoop-2.7.3/logs/yarn-yinzhengjie-nodemanager-s103.out
s102: starting nodemanager, logging to /soft/hadoop-2.7.3/logs/yarn-yinzhengjie-nodemanager-s102.out
s104: starting nodemanager, logging to /soft/hadoop-2.7.3/logs/yarn-yinzhengjie-nodemanager-s104.out
[yinzhengjie@s101 ~]$ 
[yinzhengjie@s101 ~]$ 
[yinzhengjie@s101 ~]$ xcall.sh jps
============= s101 jps ============
6883 ResourceManager
6982 Jps
6380 NameNode
6685 DFSZKFailoverController
命令执行成功
============= s102 jps ============
4240 JournalNode
4081 QuorumPeerMain
4387 NodeManager
4424 Jps
4159 DataNode
命令执行成功
============= s103 jps ============
4130 DataNode
4211 JournalNode
4356 NodeManager
4436 Jps
4044 QuorumPeerMain
命令执行成功
============= s104 jps ============
4352 NodeManager
4390 Jps
4125 DataNode
4047 QuorumPeerMain
4207 JournalNode
命令执行成功
============= s105 jps ============
3538 DFSZKFailoverController
3436 NameNode
3710 Jps
命令执行成功
[yinzhengjie@s101 ~]$ 
启动yarn资源调度([yinzhengjie@s101 ~]$ start-yarn.sh )

1>.hive交互命令

[yinzhengjie@s101 download]$ cat teachers.txt 
70    Dennis MacAlistair Ritchie
49    Linus Benedict Torvalds
68    Bjarne Stroustrup
62    Guido van Rossum
63    James Gosling
60    Martin Odersky
62    Rob Pike
50    Rasmus Lerdorf
50    Brendan Eich
[yinzhengjie@s101 download]$ 
[yinzhengjie@s101 download]$ cat teachers.txt
[yinzhengjie@s101 ~]$ hive -help
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/soft/apache-hive-2.1.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hbase-1.2.6/lib/phoenix-4.10.0-HBase-1.2-client.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
usage: hive
 -d,--define <key=value>          Variable subsitution to apply to hive
                                  commands. e.g. -d A=B or --define A=B
    --database <databasename>     Specify the database to use
 -e <quoted-query-string>         SQL from command line
 -f <filename>                    SQL from files
 -H,--help                        Print help information
    --hiveconf <property=value>   Use value for given property
    --hivevar <key=value>         Variable subsitution to apply to hive
                                  commands. e.g. --hivevar A=B
 -i <filename>                    Initialization SQL file
 -S,--silent                      Silent mode in interactive shell
 -v,--verbose                     Verbose mode (echo executed SQL to the
                                  console)
[yinzhengjie@s101 ~]$ 
查看帮助信息([yinzhengjie@s101 ~]$ hive -help)
[yinzhengjie@s101 ~]$ hive
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/soft/apache-hive-2.1.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hbase-1.2.6/lib/phoenix-4.10.0-HBase-1.2-client.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.

Logging initialized using configuration in jar:file:/soft/apache-hive-2.1.1-bin/lib/hive-common-2.1.1.jar!/hive-log4j2.properties Async: true
default
yinzhengjie
Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
hive> 
登录hive的shell命令行交互界面([yinzhengjie@s101 ~]$ hive)
[yinzhengjie@s101 ~]$ hive
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/soft/apache-hive-2.1.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hbase-1.2.6/lib/phoenix-4.10.0-HBase-1.2-client.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.

Logging initialized using configuration in jar:file:/soft/apache-hive-2.1.1-bin/lib/hive-common-2.1.1.jar!/hive-log4j2.properties Async: true
default
yinzhengjie
Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
hive> show databases;
OK
default
yinzhengjie
Time taken: 0.01 seconds, Fetched: 2 row(s)
hive> 
查看已经存在的库名(hive> show databases;)
[yinzhengjie@s101 ~]$ hive
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/soft/apache-hive-2.1.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hbase-1.2.6/lib/phoenix-4.10.0-HBase-1.2-client.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.

Logging initialized using configuration in jar:file:/soft/apache-hive-2.1.1-bin/lib/hive-common-2.1.1.jar!/hive-log4j2.properties Async: true
default
yinzhengjie
Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
hive> show databases;
OK
default
yinzhengjie
Time taken: 0.008 seconds, Fetched: 2 row(s)
hive> use yinzhengjie;
OK
Time taken: 0.018 seconds
hive> 
使用已经存在的数据库(hive> use yinzhengjie;)
hive> show databases;
OK
default
yinzhengjie
Time taken: 0.008 seconds, Fetched: 2 row(s)
hive> use yinzhengjie;
OK
Time taken: 0.018 seconds
hive> show tables;
OK
az_top3
az_wc
test1
test2
test3
test4
yzj
Time taken: 0.025 seconds, Fetched: 7 row(s)
hive> 
查看当前库已经存在的表(hive> show tables;)
hive> show databases;
OK
default
yinzhengjie
Time taken: 0.008 seconds, Fetched: 2 row(s)
hive> use yinzhengjie;
OK
Time taken: 0.018 seconds
hive> show tables;
OK
az_top3
az_wc
test1
test2
test3
test4
yzj
Time taken: 0.025 seconds, Fetched: 7 row(s)
hive> create table Teacher(id int,name string)row format delimited fields terminated by '\t';
OK
Time taken: 0.626 seconds
hive> show tables;
OK
az_top3
az_wc
teacher
test1
test2
test3
test4
yzj
Time taken: 0.028 seconds, Fetched: 8 row(s)
hive> 
创建一个teacher表(hive> create table Teacher(id int,name string)row format delimited fields terminated by '\t';)
hive> show tables;
OK
teacher
yzj
Time taken: 0.022 seconds, Fetched: 2 row(s)
hive> select * from teacher;
OK
Time taken: 0.105 seconds
hive> load data local inpath '/home/yinzhengjie/download/teachers.txt' into table yinzhengjie.teacher;
Loading data to table yinzhengjie.teacher
OK
Time taken: 0.256 seconds
hive> select * from teacher;
OK
70    Dennis MacAlistair Ritchie
49    Linus Benedict Torvalds
68    Bjarne Stroustrup
62    Guido van Rossum
63    James Gosling
60    Martin Odersky
62    Rob Pike
50    Rasmus Lerdorf
50    Brendan Eich
Time taken: 0.104 seconds, Fetched: 9 row(s)
hive> 
从本地加载数据到hive中已经存在的表(hive> load data local inpath '/home/yinzhengjie/download/teachers.txt' into table yinzhengjie.teacher;)
hive (yinzhengjie)> load data inpath '/home/yinzhengjie/data/logs/umeng/raw-log/201808/06/2346' into table raw_logs partition(ym=201808 , day=06 ,hm=2346);
Loading data to table yinzhengjie.raw_logs partition (ym=201808, day=6, hm=2346)
OK
Time taken: 1.846 seconds
hive (yinzhengjie)>
从hdfs上加载数据到hive中已经存在的表(hive (yinzhengjie)> load data inpath '/home/yinzhengjie/data/logs/umeng/raw-log/201808/06/2346' into table raw_logs partition(ym=201808 , day=06 ,hm=2346);)
[yinzhengjie@s101 download]$ cat /home/yinzhengjie/download/umeng_create_logs_ddl.sql
use yinzhengjie ;

--startuplogs
create table if not exists startuplogs
(
  appChannel             string , 
  appId             string , 
  appPlatform             string , 
  appVersion             string , 
  brand             string , 
  carrier             string , 
  country             string , 
  createdAtMs             bigint , 
  deviceId             string , 
  deviceStyle             string , 
  ipAddress             string , 
  network             string , 
  osType             string , 
  province             string , 
  screenSize             string , 
  tenantId             string 
)
partitioned by (ym int ,day int , hm int) 
stored as parquet ;

--eventlogs
create table if not exists eventlogs
(
  appChannel             string , 
  appId             string , 
  appPlatform             string , 
  appVersion             string , 
  createdAtMs             bigint , 
  deviceId             string , 
  deviceStyle             string , 
  eventDurationSecs             bigint , 
  eventId             string , 
  osType             string , 
  tenantId             string 
)
partitioned by (ym int ,day int , hm int) 
stored as parquet ;

--errorlogs
create table if not exists errorlogs
(
  appChannel             string , 
  appId             string , 
  appPlatform             string , 
  appVersion             string , 
  createdAtMs             bigint , 
  deviceId             string , 
  deviceStyle             string , 
  errorBrief             string , 
  errorDetail             string , 
  osType             string , 
  tenantId             string 
)
partitioned by (ym int ,day int , hm int) 
stored as parquet ;

--usagelogs
create table if not exists usagelogs
(
  appChannel             string , 
  appId             string , 
  appPlatform             string , 
  appVersion             string , 
  createdAtMs             bigint , 
  deviceId             string , 
  deviceStyle             string , 
  osType             string , 
  singleDownloadTraffic             bigint , 
  singleUploadTraffic             bigint , 
  singleUseDurationSecs             bigint , 
  tenantId             string 
)
partitioned by (ym int ,day int , hm int) 
stored as parquet ;

--pagelogs
create table if not exists pagelogs
(
  appChannel             string , 
  appId             string , 
  appPlatform             string , 
  appVersion             string , 
  createdAtMs             bigint , 
  deviceId             string , 
  deviceStyle             string , 
  nextPage             string , 
  osType             string , 
  pageId             string , 
  pageViewCntInSession             int , 
  stayDurationSecs             bigint , 
  tenantId             string , 
  visitIndex             int 
)
partitioned by (ym int ,day int , hm int) 
stored as parquet ;
[yinzhengjie@s101 download]$ 
HQL测试语句([yinzhengjie@s101 download]$ cat /home/yinzhengjie/download/umeng_create_logs_ddl.sql)
hive (yinzhengjie)> show tables;
OK
tab_name
myusers
raw_logs
student
teacher
teacherbak
teachercopy
Time taken: 0.044 seconds, Fetched: 6 row(s)
hive (yinzhengjie)> 
hive (yinzhengjie)> source /home/yinzhengjie/download/umeng_create_logs_ddl.sql;
OK
Time taken: 0.008 seconds
OK
Time taken: 0.257 seconds
OK
Time taken: 0.058 seconds
OK
Time taken: 0.073 seconds
OK
Time taken: 0.065 seconds
OK
Time taken: 0.053 seconds
hive (yinzhengjie)> show tables;
OK
tab_name
errorlogs
eventlogs
myusers
pagelogs
raw_logs
startuplogs
student
teacher
teacherbak
teachercopy
usagelogs
Time taken: 0.014 seconds, Fetched: 11 row(s)
hive (yinzhengjie)> 
在hive中执行HQL语句文本文件(hive (yinzhengjie)> source /home/yinzhengjie/download/umeng_create_logs_ddl.sql;)
[yinzhengjie@s101 ~]$ hive
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/soft/apache-hive-2.1.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hbase-1.2.6/lib/phoenix-4.10.0-HBase-1.2-client.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.

Logging initialized using configuration in jar:file:/soft/apache-hive-2.1.1-bin/lib/hive-common-2.1.1.jar!/hive-log4j2.properties Async: true
Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
hive> dfs -cat /user/hive/warehouse/yinzhengjie.db/teacher/teachers.txt;
70    Dennis MacAlistair Ritchie
49    Linus Benedict Torvalds
68    Bjarne Stroustrup
62    Guido van Rossum
63    James Gosling
60    Martin Odersky
62    Rob Pike
50    Rasmus Lerdorf
50    Brendan Eich
hive>
在hive的命令行窗口中查看hdfs文件系统中的文件内容(hive> dfs -cat /user/hive/warehouse/yinzhengjie.db/teacher/teachers.txt;)
[yinzhengjie@s101 ~]$ hive
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/soft/apache-hive-2.1.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hbase-1.2.6/lib/phoenix-4.10.0-HBase-1.2-client.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.

Logging initialized using configuration in jar:file:/soft/apache-hive-2.1.1-bin/lib/hive-common-2.1.1.jar!/hive-log4j2.properties Async: true
Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
hive> ! ls /home/yinzhengjie/download;
1
derby.log
hivef.sql
metastore_db
MySpark.jar
spark-2.1.0-bin-hadoop2.7.tgz
teachers.txt
temp
hive> 
在hive命令行窗口查看Linux文件系统中的文件内容(hive> ! ls /home/yinzhengjie/download;)
[yinzhengjie@s101 download]$ cat ~/.hivehistory 
show databases;
 quit;
show databases;
quit
;
create table(id int,name string) row format delimited
fields terminated by '\t'
lines terminated by '\n'
stored as textfile;
create table users(id int , name string) row format delimited
fields terminated by '\t'
lines terminated by '\n'
stored as textfile;
load data local inpath 'user.txt' into table users;
!pwd
;
!cd /home/yinzhengjie
;
!pwd
;
quit;
load data local inpath 'user.txt' into table users;
load data inpath  'user.txt' into table users;
hdfs dfs -put 'user.txt';
hdfs dfs put 'user.txt';
dfs put 'user.txt';
dfs -put 'user.txt';
dfs -put 'user.txt' /;
dfs -put user.txt ;
dfs -put user.txt /;
load data inpath  'user.txt' into table users;
load data inpath  '/user.txt' into table users;
;;
;
;;
ipconfig
;
quit
quit;
exit
exit;
show databases;
use yinzhengjie
;
show tables;
SET hive.support.concurrency = true;
show tables;
use yinzhengjie;
show tables;
select * from yzj;
SET hive.support.concurrency = true;
SET hive.enforce.bucketing = true;
SET hive.exec.dynamic.partition.mode = nonstrict;
SET hive.txn.manager = org.apache.hadoop.hive.ql.lockmgr.DbTxnManager;
SET hive.compactor.initiator.on = true;
SET hive.compactor.worker.threads = 1;
select * from yzj;
use yinzhengjie;
SET hive.support.concurrency = true;
SET hive.enforce.bucketing = true;
SET hive.exec.dynamic.partition.mode = nonstrict;
SET hive.txn.manager = org.apache.hadoop.hive.ql.lockmgr.DbTxnManager;
SET hive.compactor.initiator.on = true;
SET hive.compactor.worker.threads = 1;
show tables;
select * from yzj;
show databases;
use yinzhengjie;
show tables;
hive
show databases;
use yinzhengjie;
show tables;
select * from az_top3;
quit;
show databases;
use yinzhengjie
;
show tables;
use yinzhengjie;
show databases;
use yinzhengjie;
show tables;
create table Teacher(id int,name string)row format delimited fields terminated by '\t';
show tables;
load data local inpath '/home/yinzhengjie/download/teachers.txt'
;
show tables;
drop table taacher;
show databases;
use yinzhengjie;
show tables;
drop table teacher;
show tables;
;
show tables;
create table Teacher(id int,name string)row format delimited fields terminated by '\t';
show tables;
drop table test1,test2,test3;
drop table test1;
drop table test2;
drop table test3;
drop table test4;
show tables;
drop table az_top3;
drop table az_wc;
show tbales;
show databasers;
show databases;
drop database yinzhengjie;
;
use yinzhengjie;
show tables;
drop table teacher;
show tables;
create table Teacher(id int,name string)row format delimited fields terminated by '\t';
show tables;
load data local inpath '/home/yinzhengjie/download/teachers.txt';
load data local inpath `/home/yinzhengjie/download/teachers.txt`;
use yinzhengjie
;
show tables;
load data local inpath '/home/yinzhengjie/download/teachers.txt' into table yinzhengjie.teacher;
select * from teacher;
drop table teacher;
;
create table Teacher(id int,name string)row format delimited fields terminated by '\t';
show tables;
select * from teacher;
load data local inpath '/home/yinzhengjie/download/teachers.txt' into table yinzhengjie.teacher;
select * from teacher;
quit;
exit;
exit
;
dfs -cat /user/hive/warehouse/yinzhengjie.db/teacher/teachers.txt;
dfs -lsr /;
;
! ls /home/yinzhengjie;
! ls /home/yinzhengjie/download;
[yinzhengjie@s101 download]$ 
查看hive中输入的所有历史命令([yinzhengjie@s101 download]$ cat ~/.hivehistory )
[yinzhengjie@s101 download]$ hive -e "select * from yinzhengjie.teacher;"
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/soft/apache-hive-2.1.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hbase-1.2.6/lib/phoenix-4.10.0-HBase-1.2-client.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.

Logging initialized using configuration in jar:file:/soft/apache-hive-2.1.1-bin/lib/hive-common-2.1.1.jar!/hive-log4j2.properties Async: true
default
yinzhengjie
OK
70    Dennis MacAlistair Ritchie
49    Linus Benedict Torvalds
68    Bjarne Stroustrup
62    Guido van Rossum
63    James Gosling
60    Martin Odersky
62    Rob Pike
50    Rasmus Lerdorf
50    Brendan Eich
Time taken: 3.414 seconds, Fetched: 9 row(s)
[yinzhengjie@s101 download]$
在shell命令行中执行HQL语句([yinzhengjie@s101 download]$ hive -e "select * from yinzhengjie.teacher;")
[yinzhengjie@s101 download]$ hive -f /home/yinzhengjie/download/hivef.sql 
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/soft/apache-hive-2.1.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hbase-1.2.6/lib/phoenix-4.10.0-HBase-1.2-client.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.

Logging initialized using configuration in jar:file:/soft/apache-hive-2.1.1-bin/lib/hive-common-2.1.1.jar!/hive-log4j2.properties Async: true
default
yinzhengjie
OK
Time taken: 0.023 seconds
OK
teacher
yzj
Time taken: 0.085 seconds, Fetched: 2 row(s)
OK
70    Dennis MacAlistair Ritchie
49    Linus Benedict Torvalds
68    Bjarne Stroustrup
62    Guido van Rossum
63    James Gosling
60    Martin Odersky
62    Rob Pike
50    Rasmus Lerdorf
50    Brendan Eich
Time taken: 2.044 seconds, Fetched: 9 row(s)
[yinzhengjie@s101 download]$ 
执行HQL语句的脚本文件([yinzhengjie@s101 download]$ hive -f /home/yinzhengjie/download/hivef.sql )
[yinzhengjie@s101 ~]$ hive
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/soft/apache-hive-2.1.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hbase-1.2.6/lib/phoenix-4.10.0-HBase-1.2-client.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.

Logging initialized using configuration in jar:file:/soft/apache-hive-2.1.1-bin/lib/hive-common-2.1.1.jar!/hive-log4j2.properties Async: true
Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
hive> quit;
[yinzhengjie@s101 ~]$ 
[yinzhengjie@s101 ~]$ hive
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/soft/apache-hive-2.1.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hbase-1.2.6/lib/phoenix-4.10.0-HBase-1.2-client.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.

Logging initialized using configuration in jar:file:/soft/apache-hive-2.1.1-bin/lib/hive-common-2.1.1.jar!/hive-log4j2.properties Async: true
Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
hive> exit;
[yinzhengjie@s101 ~]$ 
退出hive窗口(hive> exit;或者hive> quit;)

2>.DDL数据定义

hive (yinzhengjie)> show databases;
OK
database_name
default
yinzhengjie
Time taken: 0.007 seconds, Fetched: 2 row(s)
hive (yinzhengjie)> create database if not exists db_hive;
OK
Time taken: 0.034 seconds
hive (yinzhengjie)> show databases;
OK
database_name
db_hive
default
yinzhengjie
Time taken: 0.009 seconds, Fetched: 3 row(s)
hive (yinzhengjie)> 
创建一个数据库的标准写法(hive (yinzhengjie)> create database if not exists db_hive;),创建的数据库默认存放在hdfs中的“/user/hive/warehouse”
hive (yinzhengjie)> show databases;
OK
database_name
db_hive
default
yinzhengjie
Time taken: 0.008 seconds, Fetched: 3 row(s)
hive (yinzhengjie)> create database if not exists db_hive2 location "/db_hive2";
OK
Time taken: 0.04 seconds
hive (yinzhengjie)> show databases;
OK
database_name
db_hive
db_hive2
default
yinzhengjie
Time taken: 0.006 seconds, Fetched: 4 row(s)
hive (yinzhengjie)> 
创建一个数据库,使用location关键字指定数据库在HDFS上的存放位置并起一个别名(hive (yinzhengjie)> create database if not exists db_hive2 location "/db_hive2";),这种方式我不推荐大家使用,因为它和defalut数据库的存储方式很像
    用户可以使用ALTER DATABASE 命令为某个数据库的DBPROPERTIES设置键-值对属性值,来描述这个数据库的属性信息。
数据库的其他元数据信息都是不可更改的,包括数据库名和数据库所在的目录位置。
    
    hive (yinzhengjie)> show databases;
    OK
    database_name
    db_hive
    db_hive2
    default
    yinzhengjie
    Time taken: 0.007 seconds, Fetched: 4 row(s)
    hive (yinzhengjie)> ALTER DATABASE db_hive set dbproperties('Owner'='yinzhengjie');        #给数据库添加额外的属性,注意,这里并没有修改数据库里的元数据!
    OK
    Time taken: 0.03 seconds
    hive (yinzhengjie)> desc database db_hive;                                                #使用这条命令是查不到的咱们定义的属性的哟!
    OK
    db_name    comment    location    owner_name    owner_type    parameters
    db_hive        hdfs://mycluster/user/hive/warehouse/db_hive.db    yinzhengjie    USER    
    Time taken: 0.017 seconds, Fetched: 1 row(s)
    hive (yinzhengjie)> desc database extended db_hive;                                        #我们需要在数据库前加一个extended关键字,就能查看到我们定义的数据库属性。
    OK
    db_name    comment    location    owner_name    owner_type    parameters
    db_hive        hdfs://mycluster/user/hive/warehouse/db_hive.db    yinzhengjie    USER    {Owner=yinzhengjie}
    Time taken: 0.011 seconds, Fetched: 1 row(s)
    hive (yinzhengjie)> 
修改数据库属性( hive (yinzhengjie)> ALTER DATABASE db_hive set dbproperties('Owner'='yinzhengjie'); )
hive (yinzhengjie)> show databases;                                #显示所有的数据库
OK
database_name
db_hive
db_hive2
default
yinzhengjie
Time taken: 0.008 seconds, Fetched: 4 row(s)
hive (yinzhengjie)> 
hive (yinzhengjie)> show databases like 'yin*';                    #过滤显示的查询的数据库
OK
database_name
yinzhengjie
Time taken: 0.009 seconds, Fetched: 1 row(s)
hive (yinzhengjie)> 
hive (yinzhengjie)> desc database db_hive;                          #显示数据库信息
OK
db_name    comment    location    owner_name    owner_type    parameters
db_hive        hdfs://mycluster/user/hive/warehouse/db_hive.db    yinzhengjie    USER    
Time taken: 0.012 seconds, Fetched: 1 row(s)
hive (yinzhengjie)> desc database extended db_hive;                  #显示数据库详细信息,使用关键字:extended
OK
db_name    comment    location    owner_name    owner_type    parameters
db_hive        hdfs://mycluster/user/hive/warehouse/db_hive.db    yinzhengjie    USER    {Owner=yinzhengjie}
Time taken: 0.013 seconds, Fetched: 1 row(s)
hive (yinzhengjie)> 
hive (yinzhengjie)> show databases;
OK
database_name
db_hive
db_hive2
default
yinzhengjie
Time taken: 0.006 seconds, Fetched: 4 row(s)
hive (yinzhengjie)> use default;                                     #使用数据库
OK
Time taken: 0.012 seconds
hive (default)> 
查询数据库的常用姿势介绍(hive (yinzhengjie)> show databases like 'yin*';)
hive (yinzhengjie)> show databases;
OK
database_name
db_hive
db_hive2
default
yinzhengjie
Time taken: 0.006 seconds, Fetched: 4 row(s)
hive (yinzhengjie)> use db_hive2;                                #使用db_hive2数据库
OK
Time taken: 0.014 seconds
hive (db_hive2)> show tables;                                    #db_hive2数据库中没有任何表
OK
tab_name
Time taken: 0.015 seconds
hive (db_hive2)> drop database if exists db_hive2;                #删除空的数据库db_hive2
OK
Time taken: 0.05 seconds
hive (db_hive2)> show databases;
OK
database_name
db_hive
default
yinzhengjie
Time taken: 0.006 seconds, Fetched: 3 row(s)
hive (db_hive2)> use db_hive;                                    #使用db_hive数据库
OK
Time taken: 0.012 seconds
hive (db_hive)> show tables;                                    #db_hive2数据库中是有数据表的
OK
tab_name
classlist
student
teacher
Time taken: 0.016 seconds, Fetched: 3 row(s)
hive (db_hive)> drop database db_hive cascade;                    #使用关键字cascade强制删除有数据的数据库db_hive
OK
Time taken: 0.304 seconds
hive (db_hive)> use yinzhengjie;
OK
Time taken: 0.016 seconds
hive (yinzhengjie)> show databases;
OK
database_name
default
yinzhengjie
Time taken: 0.007 seconds, Fetched: 2 row(s)
hive (yinzhengjie)> 
删除数据库的常用姿势介绍(hive (db_hive)> drop database db_hive cascade;)
一.建表语法以及字段解释
1>.建表语句如下:
CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name 
    [(col_name data_type [COMMENT col_comment], ...)] 
    [COMMENT table_comment] 
    [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)] 
    [CLUSTERED BY (col_name, col_name, ...) 
    [SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS] 
    [ROW FORMAT row_format] 
    [STORED AS file_format] 
    [LOCATION hdfs_path]
2>.字段解释说明:
    a>.CREATE TABLE 创建一个指定名字的表。如果相同名字的表已经存在,则抛出异常;用户可以用 IF NOT EXISTS 选项来忽略这个异常。
    b>.EXTERNAL关键字可以让用户创建一个外部表,在建表的同时指定一个指向实际数据的路径(LOCATION),Hive创建内部表时,会将数据移动到数据仓库指向的路径;若创建外部表,仅记录数据所在的路径,不对数据的位置做任何改变。在删除表的时候,内部表的元数据和数据会被一起删除,而外部表只删除元数据,不删除数据。
    c>.COMMENT:为表和列添加注释。
    d>.PARTITIONED BY创建分区表
    e>.CLUSTERED BY创建分桶表
    f>.SORTED BY不常用
    g>.ROW FORMAT 
                DELIMITED [FIELDS TERMINATED BY char] [COLLECTION ITEMS TERMINATED BY char] 
                        [MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char] 
                   | SERDE serde_name [WITH SERDEPROPERTIES (property_name=property_value, property_name=property_value, ...)]
            用户在建表的时候可以自定义SerDe或者使用自带的SerDe。如果没有指定ROW FORMAT 或者ROW FORMAT DELIMITED,将会使用自带的SerDe。在建表的时候,用户还需要为表指定列,用户在指定表的列的同时也会指定自定义的SerDe,Hive通过SerDe确定表的具体的列的数据。
    h>.STORED AS指定存储文件类型
            常用的存储文件类型:SEQUENCEFILE(二进制序列文件)、TEXTFILE(文本)、RCFILE(列式存储格式文件)
            如果文件数据是纯文本,可以使用STORED AS TEXTFILE。如果数据需要压缩,使用 STORED AS SEQUENCEFILE。
    i>.LOCATION :指定表在HDFS上的存储位置。
    j>.LIKE允许用户复制现有的表结构,但是不复制数据。

二.管理表(内部表)理论
    默认创建的表都是所谓的管理表,有时也被称为内部表。因为这种表,Hive会(或多或少地)控制着数据的生命周期。Hive默认情况下会将这些表的数据存储在由配置项hive.metastore.warehouse.dir(例如,/user/hive/warehouse)所定义的目录的子目录下。    当我们删除一个管理表时,Hive也会删除这个表中数据。管理表不适合和其他工具共享数据。


三.外部表
1>.理论
    因为表是外部表,所以Hive并非认为其完全拥有这份数据。删除该表并不会删除掉这份数据,不过描述表的元数据信息会被删除掉。
2>.管理表和外部表的使用场景:
    每天将收集到的网站日志定期流入HDFS文本文件。在外部表(原始日志表)的基础上做大量的统计分析,用到的中间表、结果表使用内部表存储,数据通过SELECT+INSERT进入内部表。

四.分区表
    分区表实际上就是对应一个HDFS文件系统上的独立的文件夹,该文件夹下是该分区所有的数据文件。Hive中的分区就是分目录,把一个大的数据集根据业务需要分割成小的数据集。在查询时通过WHERE子句中的表达式选择查询所需要的指定的分区,这样的查询效率会提高很多。
建表语法与管理表(内部表),外部表以及分区理论知识扫描,如果你小白,这里的内容强烈推荐你看三遍!!!
管理表-普通创建表的标准写法,指定存储方式以及表创建的数据库名称(hive (yinzhengjie)> create table if not exists Student(id int,name string)row format delimited fields terminated by '\t' stored as textfile location '/user/hive/warehouse/yinzhengjie.db';)
hive (yinzhengjie)> show tables;
OK
tab_name
student
teacher
Time taken: 0.015 seconds, Fetched: 2 row(s)
hive (yinzhengjie)> create table if not exists teacherbak as select id, name from teacher;                #根据查询结果创建表,即查询的结果会添加到新创建的表中,它会自动启用一个job
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180806000505_71d796a2-3129-4497-9741-b5d39abd58c9
Total jobs = 3
Launching Job 1 out of 3
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1533518652134_0001, Tracking URL = http://s101:8088/proxy/application_1533518652134_0001/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533518652134_0001
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0
2018-08-06 00:05:26,132 Stage-1 map = 0%,  reduce = 0%
2018-08-06 00:05:37,668 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.02 sec
MapReduce Total cumulative CPU time: 2 seconds 20 msec
Ended Job = job_1533518652134_0001
Stage-4 is selected by condition resolver.
Stage-3 is filtered out by condition resolver.
Stage-5 is filtered out by condition resolver.
Moving data to directory hdfs://mycluster/user/hive/warehouse/yinzhengjie.db/.hive-staging_hive_2018-08-06_00-05-05_947_8165112419833752968-1/-ext-10002
Moving data to directory hdfs://mycluster/user/hive/warehouse/yinzhengjie.db/teacherbak
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1   Cumulative CPU: 2.02 sec   HDFS Read: 3610 HDFS Write: 258 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 20 msec
OK
id    name
Time taken: 33.117 seconds
hive (yinzhengjie)> show tables;
OK
tab_name
student
teacher
teacherbak
Time taken: 0.014 seconds, Fetched: 3 row(s)
hive (yinzhengjie)> select id, name from teacher;                #查看teacher表中的数据
OK
id    name
70    Dennis MacAlistair Ritchie
49    Linus Benedict Torvalds
68    Bjarne Stroustrup
62    Guido van Rossum
63    James Gosling
60    Martin Odersky
62    Rob Pike
50    Rasmus Lerdorf
50    Brendan Eich
Time taken: 0.093 seconds, Fetched: 9 row(s)
hive (yinzhengjie)> 
hive (yinzhengjie)> select id, name from teacherbak;            #查看teacherbak表中的数据,我们会发现其内容和teacher一致
OK
id    name
70    Dennis MacAlistair Ritchie
49    Linus Benedict Torvalds
68    Bjarne Stroustrup
62    Guido van Rossum
63    James Gosling
60    Martin Odersky
62    Rob Pike
50    Rasmus Lerdorf
50    Brendan Eich
Time taken: 0.083 seconds, Fetched: 9 row(s)
hive (yinzhengjie)> 
管理表(内部表)-根据查询结果创建表,即查询的结果会添加到新创建的表中(hive (yinzhengjie)> create table if not exists teacherbak as select id, name from teacher;)
hive (yinzhengjie)> show tables;
OK
tab_name
student
teacher
teacherbak
Time taken: 0.013 seconds, Fetched: 3 row(s)
hive (yinzhengjie)> desc teacher;
OK
col_name    data_type    comment
id                      int                                         
name                    string                                      
Time taken: 0.029 seconds, Fetched: 2 row(s)
hive (yinzhengjie)> select * from teacher;
OK
teacher.id    teacher.name
70    Dennis MacAlistair Ritchie
49    Linus Benedict Torvalds
68    Bjarne Stroustrup
62    Guido van Rossum
63    James Gosling
60    Martin Odersky
62    Rob Pike
50    Rasmus Lerdorf
50    Brendan Eich
Time taken: 0.1 seconds, Fetched: 9 row(s)
hive (yinzhengjie)> create table if not exists teacherCopy like teacher;        #根据已经存在的表结构创建表,即只复制表结构,并不会复制表中的数据
OK
Time taken: 0.181 seconds
hive (yinzhengjie)> show tables;
OK
tab_name
student
teacher
teacherbak
teachercopy
Time taken: 0.014 seconds, Fetched: 4 row(s)
hive (yinzhengjie)> select * from teachercopy;
OK
teachercopy.id    teachercopy.name
Time taken: 0.103 seconds
hive (yinzhengjie)> desc teachercopy;
OK
col_name    data_type    comment
id                      int                                         
name                    string                                      
Time taken: 0.03 seconds, Fetched: 2 row(s)
hive (yinzhengjie)> 
管理表(内部表)-根据已经存在的表结构创建表,即只复制表结构,并不会复制表中的数据(hive (yinzhengjie)> create table if not exists teacherCopy like teacher;)
hive (yinzhengjie)> show tables;
OK
tab_name
student
teacher
teacherbak
teachercopy
Time taken: 0.012 seconds, Fetched: 4 row(s)
hive (yinzhengjie)> desc formatted teacher;                        #查询表的类型
OK
col_name    data_type    comment
# col_name                data_type               comment             
          
id                      int                                         
name                    string                                      
          
# Detailed Table Information          
Database:               yinzhengjie              
Owner:                  yinzhengjie              
CreateTime:             Sun Aug 05 19:55:34 PDT 2018     
LastAccessTime:         UNKNOWN                  
Retention:              0                        
Location:               hdfs://mycluster/user/hive/warehouse/yinzhengjie.db/teacher     
Table Type:             MANAGED_TABLE                            #显示器对面的小哥哥小姐姐往这里看,这里可以查看当前表的类型哟,这里明显是管理表,也称为内部表。
Table Parameters:          
    numFiles                1                   
    numRows                 0                   
    rawDataSize             0                   
    totalSize               179                 
    transient_lastDdlTime    1533524151          
          
# Storage Information          
SerDe Library:          org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe     
InputFormat:            org.apache.hadoop.mapred.TextInputFormat     
OutputFormat:           org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat     
Compressed:             No                       
Num Buckets:            -1                       
Bucket Columns:         []                       
Sort Columns:           []                       
Storage Desc Params:          
    field.delim             \t                  
    serialization.format    \t                  
Time taken: 0.036 seconds, Fetched: 31 row(s)
hive (yinzhengjie)> 
管理表(内部表)-查询表的类型(hive (yinzhengjie)> desc formatted teacher;)
一.查看原始数据
[yinzhengjie@s101 download]$ pwd
/home/yinzhengjie/download
[yinzhengjie@s101 download]$ 
[yinzhengjie@s101 download]$ cat dept.dat 
10    ACCOUNTING    2700
20    RESEARCH    3800
30    SALES    5900
40    OPERATIONS    4700
[yinzhengjie@s101 download]$ 
[yinzhengjie@s101 download]$ more emp.dat 
7369    SMITH    CLERK    7902    1980-12-17    800.00        20
7499    ALLEN    SALESMAN    7698    1981-2-20    1600.00    300.00    30
7521    WARD    SALESMAN    7698    1981-2-22    1250.00    500.00    30
7566    JONES    MANAGER    7839    1981-4-2    2975.00        20
7654    MARTIN    SALESMAN    7698    1981-9-28    1250.00    1400.00    30
7698    BLAKE    MANAGER    7839    1981-5-1    2850.00        30
7782    CLARK    MANAGER    7839    1981-6-9    2450.00        10
7788    SCOTT    ANALYST    7566    1987-4-19    3000.00        20
7839    KING    PRESIDENT        1981-11-17    5000.00        10
7844    TURNER    SALESMAN    7698    1981-9-8    1500.00    0.00    30
7876    ADAMS    CLERK    7788    1987-5-23    1100.00        20
7900    JAMES    CLERK    7698    1981-12-3    950.00        30
7902    FORD    ANALYST    7566    1981-12-3    3000.00        20
7934    MILLER    CLERK    7782    1982-1-23    1300.00        10
[yinzhengjie@s101 download]$ 

二.使用关键字external创建外部表语句
1>.创建部门表
hive (yinzhengjie)> create external table if not exists yinzhengjie.dept(
                  >     deptno int,
                  >     dname string,
                  >     loc int
                  > )
                  > row format delimited fields terminated by '\t';
OK
Time taken: 0.096 seconds
hive (yinzhengjie)> 

2>.创建员工表
hive (yinzhengjie)> create external table if not exists yinzhengjie.emp(
                  >     empno int,
                  >     ename string,
                  >     job string,
                  >     mgr int,
                  >     hiredate string,
                  >     sal double, 
                  >     comm double,
                  >     deptno int
                  > )
                  > row format delimited fields terminated by '\t';
OK
Time taken: 0.064 seconds
hive (yinzhengjie)> 

3>.向外部表中导入数据
hive (yinzhengjie)> load data local inpath '/home/yinzhengjie/download/dept.dat' into table yinzhengjie.dept;
Loading data to table yinzhengjie.dept
OK
Time taken: 0.222 seconds
hive (yinzhengjie)> 
hive (yinzhengjie)> select * from dept;                            #导入成功后需要查看dept表中是否有数据
OK
dept.deptno    dept.dname    dept.loc
10    ACCOUNTING    2700
20    RESEARCH    3800
30    SALES    5900
40    OPERATIONS    4700
Time taken: 0.088 seconds, Fetched: 4 row(s)
hive (yinzhengjie)> 
hive (yinzhengjie)> load data local inpath '/home/yinzhengjie/download/emp.dat' into table yinzhengjie.emp;
Loading data to table yinzhengjie.emp
OK
Time taken: 0.21 seconds
hive (yinzhengjie)> 
hive (yinzhengjie)> select * from emp;                            #导入成功后需要查看emp表中是否有数据
OK
emp.empno    emp.ename    emp.job    emp.mgr    emp.hiredate    emp.sal    emp.comm    emp.deptno
7369    SMITH    CLERK    7902    1980-12-17    800.0    NULL    20
7499    ALLEN    SALESMAN    7698    1981-2-20    1600.0    300.0    30
7521    WARD    SALESMAN    7698    1981-2-22    1250.0    500.0    30
7566    JONES    MANAGER    7839    1981-4-2    2975.0    NULL    20
7654    MARTIN    SALESMAN    7698    1981-9-28    1250.0    1400.0    30
7698    BLAKE    MANAGER    7839    1981-5-1    2850.0    NULL    30
7782    CLARK    MANAGER    7839    1981-6-9    2450.0    NULL    10
7788    SCOTT    ANALYST    7566    1987-4-19    3000.0    NULL    20
7839    KING    PRESIDENT    NULL    1981-11-17    5000.0    NULL    10
7844    TURNER    SALESMAN    7698    1981-9-8    1500.0    0.0    30
7876    ADAMS    CLERK    7788    1987-5-23    1100.0    NULL    20
7900    JAMES    CLERK    7698    1981-12-3    950.0    NULL    30
7902    FORD    ANALYST    7566    1981-12-3    3000.0    NULL    20
7934    MILLER    CLERK    7782    1982-1-23    1300.0    NULL    10
Time taken: 0.079 seconds, Fetched: 14 row(s)
hive (yinzhengjie)> 

4>.查看表类型
hive (yinzhengjie)> desc formatted dept;                #查看dept表格式化数据
OK
col_name    data_type    comment
# col_name                data_type               comment             
          
deptno                  int                                         
dname                   string                                      
loc                     int                                         
          
# Detailed Table Information          
Database:               yinzhengjie              
Owner:                  yinzhengjie              
CreateTime:             Mon Aug 06 00:52:48 PDT 2018     
LastAccessTime:         UNKNOWN                  
Retention:              0                        
Location:               hdfs://mycluster/user/hive/warehouse/yinzhengjie.db/dept     
Table Type:             EXTERNAL_TABLE                   #Duang~显示器面前的小哥哥小姐姐往这看,这里有查看dept表的的类型是外部表哟!
Table Parameters:          
    EXTERNAL                TRUE                
    numFiles                1                   
    numRows                 0                   
    rawDataSize             0                   
    totalSize               69                  
    transient_lastDdlTime    1533542290          
          
# Storage Information          
SerDe Library:          org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe     
InputFormat:            org.apache.hadoop.mapred.TextInputFormat     
OutputFormat:           org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat     
Compressed:             No                       
Num Buckets:            -1                       
Bucket Columns:         []                       
Sort Columns:           []                       
Storage Desc Params:          
    field.delim             \t                  
    serialization.format    \t                  
Time taken: 0.036 seconds, Fetched: 33 row(s)
hive (yinzhengjie)> desc formatted emp;                #查看emp表格式化数据
OK
col_name    data_type    comment
# col_name                data_type               comment             
          
empno                   int                                         
ename                   string                                      
job                     string                                      
mgr                     int                                         
hiredate                string                                      
sal                     double                                      
comm                    double                                      
deptno                  int                                         
          
# Detailed Table Information          
Database:               yinzhengjie              
Owner:                  yinzhengjie              
CreateTime:             Mon Aug 06 00:55:41 PDT 2018     
LastAccessTime:         UNKNOWN                  
Retention:              0                        
Location:               hdfs://mycluster/user/hive/warehouse/yinzhengjie.db/emp     
Table Type:             EXTERNAL_TABLE                   #Duang~显示器面前的小哥哥小姐姐往这看,这里有查看emp表的的类型是外部表哟!
Table Parameters:          
    EXTERNAL                TRUE                
    numFiles                1                   
    numRows                 0                   
    rawDataSize             0                   
    totalSize               657                 
    transient_lastDdlTime    1533542299          
          
# Storage Information          
SerDe Library:          org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe     
InputFormat:            org.apache.hadoop.mapred.TextInputFormat     
OutputFormat:           org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat     
Compressed:             No                       
Num Buckets:            -1                       
Bucket Columns:         []                       
Sort Columns:           []                       
Storage Desc Params:          
    field.delim             \t                  
    serialization.format    \t                  
Time taken: 0.036 seconds, Fetched: 38 row(s)
hive (yinzhengjie)> 

5>.在hive中删除外部表并不会删除hdfs的真实数据
hive (yinzhengjie)> show tables;
OK
tab_name
dept
emp
student
teacher
teacherbak
teachercopy
Time taken: 0.014 seconds, Fetched: 6 row(s)
hive (yinzhengjie)> drop table dept;
OK
Time taken: 0.122 seconds
hive (yinzhengjie)> drop table emp;
OK
Time taken: 0.079 seconds
hive (yinzhengjie)> show tables;                                                        #你会发现删除了元数据表,并没有删除真实数据,我们可以在hive中通过dfs命令查看真实数据
OK
tab_name
student
teacher
teacherbak
teachercopy
Time taken: 0.013 seconds, Fetched: 4 row(s)
hive (yinzhengjie)> 
hive (yinzhengjie)> dfs -cat /user/hive/warehouse/yinzhengjie.db/dept/dept.dat;            #怎么样?hdfs中的文件内容依旧存在,并没有删除,hive只是删除了元数据而已。
10    ACCOUNTING    2700
20    RESEARCH    3800
30    SALES    5900
40    OPERATIONS    4700
hive (yinzhengjie)> 
                  > dfs -cat /user/hive/warehouse/yinzhengjie.db/emp/emp.dat;            #怎么样?hdfs中的文件内容依旧存在,并没有删除,hive只是删除了元数据而已。
7369    SMITH    CLERK    7902    1980-12-17    800.00        20
7499    ALLEN    SALESMAN    7698    1981-2-20    1600.00    300.00    30
7521    WARD    SALESMAN    7698    1981-2-22    1250.00    500.00    30
7566    JONES    MANAGER    7839    1981-4-2    2975.00        20
7654    MARTIN    SALESMAN    7698    1981-9-28    1250.00    1400.00    30
7698    BLAKE    MANAGER    7839    1981-5-1    2850.00        30
7782    CLARK    MANAGER    7839    1981-6-9    2450.00        10
7788    SCOTT    ANALYST    7566    1987-4-19    3000.00        20
7839    KING    PRESIDENT        1981-11-17    5000.00        10
7844    TURNER    SALESMAN    7698    1981-9-8    1500.00    0.00    30
7876    ADAMS    CLERK    7788    1987-5-23    1100.00        20
7900    JAMES    CLERK    7698    1981-12-3    950.00        30
7902    FORD    ANALYST    7566    1981-12-3    3000.00        20
7934    MILLER    CLERK    7782    1982-1-23    1300.00        10
hive (yinzhengjie)> 
外部表案例实操-分别创建部门和员工外部表,并向表中导入数据。
分区表的特点总结如下:
    1>.分区表实际上就是对应一个HDFS文件系统上的独立的文件夹,该文件夹下是该分区所有的数据文件。
    2>.Hive中的分区就是对应一个HDFS文件系统上分目录,把一个大的数据集根据业务的需要分割成小的数据集。
    3>.在查询时通过where子句中的表达式选择查询所需要的指定分区,这样的查询效率会提高很多。





[yinzhengjie@s101 download]$ cat users.txt 
1    yinzhengjie    26
2    Guido van Rossum    62        
3    Martin Odersky    60
4    Rasmus Lerdorf    50
[yinzhengjie@s101 download]$ 
[yinzhengjie@s101 download]$ cat dept.txt 
10    开发部门    20000
20    运维部门    13000
30    测试部门    8000
40    产品部门    6000
50    销售部门    15000
60    财务部门    17000
70    人事部门    16000
[yinzhengjie@s101 download]$ 
分区表的特点总结以及测试数据“dept.txt”和"users.txt"文本内容
hive (yinzhengjie)> show tables;
OK
tab_name
Time taken: 0.038 seconds
hive (yinzhengjie)> create table dept_partition(
                  >     deptno int,
                  >     dname string,
                  >     loc string
                  > )
                  > partitioned by (month string)
                  > row format delimited fields terminated by '\t';
OK
Time taken: 0.262 seconds
hive (yinzhengjie)> 
hive (yinzhengjie)> show tables;
OK
tab_name
dept_partition
Time taken: 0.035 seconds, Fetched: 1 row(s)
hive (yinzhengjie)> 
分区表-创建一个分区表语法(hive (yinzhengjie)> create table dept_partition(deptno int,dname string,loc string) partitioned by (month string)row format delimited fields terminated by '\t';)
hive (yinzhengjie)> show tables;
OK
tab_name
dept_partition
raw_logs
student
teacher
teacherbak
teachercopy
Time taken: 0.016 seconds, Fetched: 6 row(s)
hive (yinzhengjie)> load data local inpath '/home/yinzhengjie/download/dept.txt' into table yinzhengjie.dept_partition partition(month='201803');            #加载数据指定分区
Loading data to table yinzhengjie.dept_partition partition (month=201803)
OK
Time taken: 0.609 seconds
hive (yinzhengjie)> load data local inpath '/home/yinzhengjie/download/dept.txt' into table yinzhengjie.dept_partition partition(month='201804');
Loading data to table yinzhengjie.dept_partition partition (month=201804)
OK
Time taken: 0.868 seconds
hive (yinzhengjie)> load data local inpath '/home/yinzhengjie/download/dept.txt' into table yinzhengjie.dept_partition partition(month='201805');
Loading data to table yinzhengjie.dept_partition partition (month=201805)
OK
Time taken: 0.462 seconds
hive (yinzhengjie)> select * from dept_partition;
OK
dept_partition.deptno    dept_partition.dname    dept_partition.loc    dept_partition.month
10    开发部门    20000    201803
20    运维部门    13000    201803
30    测试部门    8000    201803
40    产品部门    6000    201803
50    销售部门    15000    201803
60    财务部门    17000    201803
70    人事部门    16000    201803
10    开发部门    20000    201804
20    运维部门    13000    201804
30    测试部门    8000    201804
40    产品部门    6000    201804
50    销售部门    15000    201804
60    财务部门    17000    201804
70    人事部门    16000    201804
10    开发部门    20000    201805
20    运维部门    13000    201805
30    测试部门    8000    201805
40    产品部门    6000    201805
50    销售部门    15000    201805
60    财务部门    17000    201805
70    人事部门    16000    201805
Time taken: 0.129 seconds, Fetched: 21 row(s)
hive (yinzhengjie)> select * from dept_partition where month='201805';
OK
dept_partition.deptno    dept_partition.dname    dept_partition.loc    dept_partition.month
10    开发部门    20000    201805
20    运维部门    13000    201805
30    测试部门    8000    201805
40    产品部门    6000    201805
50    销售部门    15000    201805
60    财务部门    17000    201805
70    人事部门    16000    201805
Time taken: 1.017 seconds, Fetched: 7 row(s)
hive (yinzhengjie)> 
分区表-加载数据指定一个分区表(hive (yinzhengjie)> load data local inpath '/home/yinzhengjie/download/dept.txt' into table yinzhengjie.dept_partition partition(month='201805');)
hive (yinzhengjie)> show partitions dept_partition;
OK
partition
month=201803
month=201804
month=201805
Time taken: 0.563 seconds, Fetched: 3 row(s)
hive (yinzhengjie)> 
分区表-查看分区表现有的分区个数(hive (yinzhengjie)> show partitions dept_partition;)
hive (yinzhengjie)> select * from dept_partition where month='201805';                    #单分区查询
OK
dept_partition.deptno    dept_partition.dname    dept_partition.loc    dept_partition.month
10    开发部门    20000    201805
20    运维部门    13000    201805
30    测试部门    8000    201805                       
40    产品部门    6000    201805
50    销售部门    15000    201805
60    财务部门    17000    201805
70    人事部门    16000    201805
Time taken: 1.017 seconds, Fetched: 7 row(s)
hive (yinzhengjie)>                    
hive (yinzhengjie)> select * from dept_partition where month='201803'
                  > union
                  > select * from dept_partition where month='201804'
                  > union
                  > select * from dept_partition where month='201805';                        #多分区联合查询,你会发现它的速度还不如select * from dept_partition;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180808214447_1a70bd61-3355-4f99-ba74-de7503593798
Total jobs = 2
Launching Job 1 out of 2
Number of reduce tasks not specified. Estimated from input data size: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Starting Job = job_1533789743141_0001, Tracking URL = http://s101:8088/proxy/application_1533789743141_0001/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0001
Hadoop job information for Stage-1: number of mappers: 2; number of reducers: 1
2018-08-08 21:45:46,855 Stage-1 map = 0%,  reduce = 0%
2018-08-08 21:46:32,103 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 6.11 sec
2018-08-08 21:47:09,769 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 8.95 sec
MapReduce Total cumulative CPU time: 8 seconds 950 msec
Ended Job = job_1533789743141_0001
Launching Job 2 out of 2
Number of reduce tasks not specified. Estimated from input data size: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Starting Job = job_1533789743141_0002, Tracking URL = http://s101:8088/proxy/application_1533789743141_0002/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0002
Hadoop job information for Stage-2: number of mappers: 2; number of reducers: 1
2018-08-08 21:47:41,300 Stage-2 map = 0%,  reduce = 0%
2018-08-08 21:48:41,349 Stage-2 map = 0%,  reduce = 0%, Cumulative CPU 5.88 sec
2018-08-08 21:48:42,776 Stage-2 map = 100%,  reduce = 0%, Cumulative CPU 7.33 sec
2018-08-08 21:49:23,133 Stage-2 map = 100%,  reduce = 100%, Cumulative CPU 10.41 sec
MapReduce Total cumulative CPU time: 10 seconds 410 msec
Ended Job = job_1533789743141_0002
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 2  Reduce: 1   Cumulative CPU: 8.95 sec   HDFS Read: 17348 HDFS Write: 708 SUCCESS
Stage-Stage-2: Map: 2  Reduce: 1   Cumulative CPU: 10.41 sec   HDFS Read: 17496 HDFS Write: 1194 SUCCESS
Total MapReduce CPU Time Spent: 19 seconds 360 msec
OK
u3.deptno    u3.dname    u3.loc    u3.month
10    开发部门    20000    201803
10    开发部门    20000    201804
10    开发部门    20000    201805
20    运维部门    13000    201803
20    运维部门    13000    201804
20    运维部门    13000    201805
30    测试部门    8000    201803
30    测试部门    8000    201804
30    测试部门    8000    201805
40    产品部门    6000    201803
40    产品部门    6000    201804
40    产品部门    6000    201805
50    销售部门    15000    201803
50    销售部门    15000    201804
50    销售部门    15000    201805
60    财务部门    17000    201803
60    财务部门    17000    201804
60    财务部门    17000    201805
70    人事部门    16000    201803
70    人事部门    16000    201804
70    人事部门    16000    201805
Time taken: 278.849 seconds, Fetched: 21 row(s)
hive (yinzhengjie)> 
分区表-查询分区表数据之单分区查询个多分区联合查询(hive (yinzhengjie)> select * from dept_partition where month='201803' union select * from dept_partition where month='201804' union select * from dept_partition where month='201805'; )
hive (yinzhengjie)> show partitions dept_partition;                                    #查看分区表中已经有的分区数
OK
partition
month=201803
month=201804
month=201805
Time taken: 0.563 seconds, Fetched: 3 row(s)
hive (yinzhengjie)> ALTER TABLE dept_partition ADD PARTITION(month='201806');        #添加单个分区
OK
Time taken: 0.562 seconds
hive (yinzhengjie)> show partitions dept_partition;
OK
partition
month=201803
month=201804
month=201805
month=201806
Time taken: 0.096 seconds, Fetched: 4 row(s)
hive (yinzhengjie)> ALTER TABLE dept_partition ADD PARTITION(month='201807') PARTITION(month='201808') PARTITION(month='201809');    #添加多个分区
OK
Time taken: 0.22 seconds
hive (yinzhengjie)> show partitions dept_partition;
OK
partition
month=201803
month=201804
month=201805
month=201806
month=201807
month=201808
month=201809
Time taken: 0.097 seconds, Fetched: 7 row(s)
hive (yinzhengjie)> 
分区表-增加分区之创建单个分区和同时创建多个分区案例展示(hive (yinzhengjie)> ALTER TABLE dept_partition ADD PARTITION(month='201807') PARTITION(month='201808') PARTITION(month='201809');)
hive (yinzhengjie)> 
hive (yinzhengjie)> show partitions dept_partition;                #查看当前已经有的分区数
OK
partition
month=201803
month=201804
month=201805
month=201806
month=201807
month=201808
month=201809
Time taken: 0.114 seconds, Fetched: 7 row(s)
hive (yinzhengjie)> ALTER TABLE dept_partition DROP PARTITION(month='201807');        #删除单个分区
Dropped the partition month=201807
OK
Time taken: 0.893 seconds
hive (yinzhengjie)> show partitions dept_partition;
OK
partition
month=201803
month=201804
month=201805
month=201806
month=201808
month=201809
Time taken: 0.083 seconds, Fetched: 6 row(s)
hive (yinzhengjie)> ALTER TABLE dept_partition DROP PARTITION(month='201808'),PARTITION(month='201809');    #同时删除多个分区
Dropped the partition month=201808
Dropped the partition month=201809
OK
Time taken: 0.364 seconds
hive (yinzhengjie)> show partitions dept_partition;
OK
partition
month=201803
month=201804
month=201805
month=201806
Time taken: 0.104 seconds, Fetched: 4 row(s)
hive (yinzhengjie)> 
分区表-删除分区之删除单个分区和同时删除多个分区案例展示(hive (yinzhengjie)> ALTER TABLE dept_partition DROP PARTITION(month='201808'),PARTITION(month='201809');)
hive (yinzhengjie)> DESC FORMATTED dept_partition;
OK
col_name    data_type    comment
# col_name                data_type               comment             
          
deptno                  int                                         
dname                   string                                      
loc                     string                                      
          
# Partition Information                                                  #这里是分区的详细信息
# col_name                data_type               comment                
          
month                   string                                                  
          
# Detailed Table Information          
Database:               yinzhengjie              
Owner:                  yinzhengjie              
CreateTime:             Wed Aug 08 21:08:14 PDT 2018     
LastAccessTime:         UNKNOWN                  
Retention:              0                        
Location:               hdfs://mycluster/user/hive/warehouse/yinzhengjie.db/dept_partition     
Table Type:             MANAGED_TABLE            
Table Parameters:          
    transient_lastDdlTime    1533787694          
          
# Storage Information          
SerDe Library:          org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe     
InputFormat:            org.apache.hadoop.mapred.TextInputFormat     
OutputFormat:           org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat     
Compressed:             No                       
Num Buckets:            -1                       
Bucket Columns:         []                       
Sort Columns:           []                       
Storage Desc Params:          
    field.delim             \t                  
    serialization.format    \t                  
Time taken: 1.813 seconds, Fetched: 33 row(s)
hive (yinzhengjie)> 
分区表-查看分区表的结构(hive (yinzhengjie)> DESC FORMATTED dept_partition;)
hive (yinzhengjie)> create table users (
                  >     id int,
                  >     name string, 
                  >     age int
                  > )
                  > partitioned by (province string, city string)
                  > row format delimited fields terminated by '\t';
OK
Time taken: 1.046 seconds
hive (yinzhengjie)> show tables;
OK
tab_name
dept_partition
raw_logs
student
teacher
teacherbak
teachercopy
users
Time taken: 0.26 seconds, Fetched: 7 row(s)
hive (yinzhengjie)> 
分区表-创建二级分区表语法(hive (yinzhengjie)> create table users (id int,name string, age int) partitioned by (province string, city string) row format delimited fields terminated by '\t';)
hive (yinzhengjie)> create table users (id int,name string, age int) partitioned by (province string, city string) row format delimited fields terminated by '\t';        #创建二级分区
OK
Time taken: 0.071 seconds
hive (yinzhengjie)> load data local inpath '/home/yinzhengjie/download/users.txt' into table users partition(province='hebei',city='shijiazhuang');                #加载数到擦创建的二级分区中
Loading data to table yinzhengjie.users partition (province=hebei, city=shijiazhuang)
OK
Time taken: 0.482 seconds
hive (yinzhengjie)> load data local inpath '/home/yinzhengjie/download/users.txt' into table users partition(province='shanxi',city='xian');
Loading data to table yinzhengjie.users partition (province=shanxi, city=xian)
OK
Time taken: 0.414 seconds
hive (yinzhengjie)> select * from users;
OK
users.id    users.name    users.age    users.province    users.city
1    yinzhengjie    26    hebei    shijiazhuang
2    Guido van Rossum    62    hebei    shijiazhuang
3    Martin Odersky    60    hebei    shijiazhuang
4    Rasmus Lerdorf    50    hebei    shijiazhuang
1    yinzhengjie    26    shanxi    xian
2    Guido van Rossum    62    shanxi    xian
3    Martin Odersky    60    shanxi    xian
4    Rasmus Lerdorf    50    shanxi    xian
Time taken: 0.101 seconds, Fetched: 8 row(s)
hive (yinzhengjie)> select * from users where province='hebei';                #查询分区表中仅含有province='hebei'的数据
OK
users.id    users.name    users.age    users.province    users.city
1    yinzhengjie    26    hebei    shijiazhuang
2    Guido van Rossum    62    hebei    shijiazhuang
3    Martin Odersky    60    hebei    shijiazhuang
4    Rasmus Lerdorf    50    hebei    shijiazhuang
Time taken: 1.775 seconds, Fetched: 4 row(s)
hive (yinzhengjie)> 
分区表-加载数据到二级分区表中(hive (yinzhengjie)> load data local inpath '/home/yinzhengjie/download/users.txt' into table users partition(province='hebei',city='shijiazhuang');)
hive (yinzhengjie)> dfs -mkdir -p /user/hive/warehouse/yinzhengjie.db/users/province=hebei/city=handan;            #在hdfs上创建目录
hive (yinzhengjie)> 
hive (yinzhengjie)> dfs -put /home/yinzhengjie/download/users.txt /user/hive/warehouse/yinzhengjie.db/users/province=hebei/city=handan;        #将本地文件的数据上传到hdfs上
hive (yinzhengjie)> 
hive (yinzhengjie)> select * from users where province='hebei' and city='handan';                #很显然,查看数据是没有的
OK
users.id    users.name    users.age    users.province    users.city
Time taken: 0.304 seconds
hive (yinzhengjie)> 
hive (yinzhengjie)> msck repair table users;                                                    #手动执行修复命令
OK
Partitions not in metastore:    users:province=hebei/city=handan
Repair: Added partition to metastore users:province=hebei/city=handan
Time taken: 0.487 seconds, Fetched: 2 row(s)
hive (yinzhengjie)> select * from users where province='hebei' and city='handan';                #再次查看数据,发现已经是有数据的
OK
users.id    users.name    users.age    users.province    users.city
1    yinzhengjie    26    hebei    handan
2    Guido van Rossum    62    hebei    handan
3    Martin Odersky    60    hebei    handan
4    Rasmus Lerdorf    50    hebei    handan
Time taken: 0.156 seconds, Fetched: 4 row(s)
hive (yinzhengjie)> 
分区表-把数据直接上传到分区目录上,让分区表和数据产生关联的方式一:上传数据后修复(hive (yinzhengjie)> msck repair table users;)
hive (yinzhengjie)> dfs -mkdir -p /user/hive/warehouse/yinzhengjie.db/users/province=shanxi/city=ankang;
hive (yinzhengjie)> dfs -put /home/yinzhengjie/download/users.txt /user/hive/warehouse/yinzhengjie.db/users/province=shanxi/city=ankang;
hive (yinzhengjie)> select * from users where province='shanxi' and city='ankang';            #查询数据,此时数据是没有查到的
OK
users.id    users.name    users.age    users.province    users.city
Time taken: 0.112 seconds
hive (yinzhengjie)> 
hive (yinzhengjie)> ALTER TABLE users add partition(province='shanxi',city='ankang');       #上传数据后添加分区
OK
Time taken: 0.14 seconds
hive (yinzhengjie)> select * from users where province='shanxi' and city='ankang';            #再次查询数据,你会发现数据又有了
OK
users.id    users.name    users.age    users.province    users.city
1    yinzhengjie    26    shanxi    ankang
2    Guido van Rossum    62    shanxi    ankang
3    Martin Odersky    60    shanxi    ankang
4    Rasmus Lerdorf    50    shanxi    ankang
Time taken: 0.156 seconds, Fetched: 4 row(s)
hive (yinzhengjie)> 
分区表-把数据直接上传到分区目录上,让分区表和数据产生关联的方式二:上传数据后添加分区(hive (yinzhengjie)> ALTER TABLE users add partition(province='shanxi',city='ankang'); )
hive (yinzhengjie)> dfs -mkdir -p /user/hive/warehouse/yinzhengjie.db/users/province=shanxi/city=hanzhong;                #在hdfs上创建目录
hive (yinzhengjie)> select * from users where province='shanxi' and city='hanzhong';                                    #很显然,查看数据是没有的
OK
users.id    users.name    users.age    users.province    users.city
Time taken: 0.148 seconds
hive (yinzhengjie)> load data local inpath '/home/yinzhengjie/download/users.txt' into table users partition(province='shanxi',city='hanzhong');        #上传数据后load数据到分区
Loading data to table yinzhengjie.users partition (province=shanxi, city=hanzhong)
OK
Time taken: 0.593 seconds
hive (yinzhengjie)> select * from users where province='shanxi' and city='hanzhong';                                    #再次查看数据,发现已经是有数据的
OK
users.id    users.name    users.age    users.province    users.city
1    yinzhengjie    26    shanxi    hanzhong
2    Guido van Rossum    62    shanxi    hanzhong
3    Martin Odersky    60    shanxi    hanzhong
4    Rasmus Lerdorf    50    shanxi    hanzhong
Time taken: 0.104 seconds, Fetched: 4 row(s)
hive (yinzhengjie)> 
分区表-把数据直接上传到分区目录上,让分区表和数据产生关联的方式三:上传数据后load数据到分区(hive (yinzhengjie)> load data local inpath '/home/yinzhengjie/download/users.txt' into table users partition(province='shanxi',city='hanzhong');)
分桶表-创建分桶表(hive (yinzhengjie)> create table stu_buck(id int,name string) clustered by(id) into 4 buckets row format delimited fields terminated by '\t';)
    1>.分区针对的是数据的存储路径;分桶针对的是数据文件。
    2>.分区提供一个隔离数据和优化查询的便利方式。不过,并非所有的数据集都可形成合理的分区,特别是之前所提到过的要确定合适的划分大小这个疑虑。分桶是将数据集分解成更容易管理的若干部分的另一个技术。


hive (yinzhengjie)> create table stu_buck(
                  >     id int,
                  >     name string
                  > )
                  > clustered by(id) 
                  > into 4 buckets
                  > row format delimited fields terminated by '\t';            #创建分桶表
OK
Time taken: 0.246 seconds
hive (yinzhengjie)> 
hive (yinzhengjie)> desc formatted stu_buck;                                #查看表结构
OK
col_name    data_type    comment
# col_name                data_type               comment             
          
id                      int                                         
name                    string                                      
          
# Detailed Table Information          
Database:               yinzhengjie              
Owner:                  yinzhengjie              
CreateTime:             Fri Aug 10 00:52:10 PDT 2018     
LastAccessTime:         UNKNOWN                  
Retention:              0                        
Location:               hdfs://mycluster/user/hive/warehouse/yinzhengjie.db/stu_buck     
Table Type:             MANAGED_TABLE            
Table Parameters:          
    COLUMN_STATS_ACCURATE    {\"BASIC_STATS\":\"true\"}
    numFiles                0                   
    numRows                 0                   
    rawDataSize             0                   
    totalSize               0                   
    transient_lastDdlTime    1533887530          
          
# Storage Information          
SerDe Library:          org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe     
InputFormat:            org.apache.hadoop.mapred.TextInputFormat     
OutputFormat:           org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat     
Compressed:             No                       
Num Buckets:            4                       #小哥哥小姐姐们,快看这里,这是4个分桶表。             
Bucket Columns:         [id]                     
Sort Columns:           []                       
Storage Desc Params:          
    field.delim             \t                  
    serialization.format    \t                  
Time taken: 0.128 seconds, Fetched: 32 row(s)
hive (yinzhengjie)> 
分桶表-创建分桶表(hive (yinzhengjie)> create table stu_buck(id int,name string) clustered by(id) into 4 buckets row format delimited fields terminated by '\t';)
分桶表-导入数据到分桶表中(hive (yinzhengjie)> load data local inpath '/home/yinzhengjie/download/stu_buck.txt' into table stu_buck;)
    1>.分区针对的是数据的存储路径;分桶针对的是数据文件。
    2>.分区提供一个隔离数据和优化查询的便利方式。不过,并非所有的数据集都可形成合理的分区,特别是之前所提到过的要确定合适的划分大小这个疑虑。分桶是将数据集分解成更容易管理的若干部分的另一个技术。


hive (yinzhengjie)> ! cat /home/yinzhengjie/download/stu_buck.txt;                                            #查看本地文件内容
1001    ss1
1002    ss2
1003    ss3
1004    ss4
1005    ss5
1006    ss6
1007    ss7
1008    ss8
1009    ss9
1010    ss10
1011    ss11
1012    ss12
1013    ss13
1014    ss14
1015    ss15
1016    ss16
hive (yinzhengjie)> 
hive (yinzhengjie)> load data local inpath '/home/yinzhengjie/download/stu_buck.txt' into table stu_buck;    #将本地文件内容导入到hive表中
Loading data to table yinzhengjie.stu_buck
OK
Time taken: 0.306 seconds
hive (yinzhengjie)>
hive (yinzhengjie)> select * from stu_buck;                    #查询桶表的内容
OK
stu_buck.id    stu_buck.name
1001    ss1
1002    ss2
1003    ss3
1004    ss4
1005    ss5
1006    ss6
1007    ss7
1008    ss8
1009    ss9
1010    ss10
1011    ss11
1012    ss12
1013    ss13
1014    ss14
1015    ss15
1016    ss16
Time taken: 0.088 seconds, Fetched: 16 row(s)
hive (yinzhengjie)> 
分桶表-导入数据到分桶表中(hive (yinzhengjie)> load data local inpath '/home/yinzhengjie/download/stu_buck.txt' into table stu_buck;)
分桶表-创建分桶表时,数据通过子查询的方式导入(hive (yinzhengjie)> insert into table stu_buck select id, name from stu;)

hive (yinzhengjie)> create table stu(
                  >     id int,
                  >     name string
                  > )
                  > row format delimited fields terminated by '\t';                                            #先建一个普通的stu表
OK
Time taken: 0.148 seconds
hive (yinzhengjie)> 
hive (yinzhengjie)> load data local inpath '/home/yinzhengjie/download/stu_buck.txt' into table stu;        #向普通的stu表中导入数据
Loading data to table yinzhengjie.stu
OK
Time taken: 0.186 seconds
hive (yinzhengjie)> 
hive (yinzhengjie)> truncate table stu_buck;                                                                #清空stu_buck表中数据
OK
Time taken: 0.098 seconds
hive (yinzhengjie)> select * from stu_buck;                                                                    #导入数据到分桶表,通过子查询的方式
OK
stu_buck.id    stu_buck.name
Time taken: 0.103 seconds
hive (yinzhengjie)> 
hive (yinzhengjie)> insert into table stu_buck select id, name from stu;                                    #导入数据到分桶表,通过子查询的方式
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180810010832_901bd21c-690c-48b5-9282-c3900c960245
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 2
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Starting Job = job_1533789743141_0049, Tracking URL = http://s101:8088/proxy/application_1533789743141_0049/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0049
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 2
2018-08-10 01:08:54,781 Stage-1 map = 0%,  reduce = 0%
2018-08-10 01:09:34,871 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.52 sec
2018-08-10 01:10:01,903 Stage-1 map = 100%,  reduce = 50%, Cumulative CPU 5.3 sec
2018-08-10 01:10:03,970 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 8.01 sec
MapReduce Total cumulative CPU time: 8 seconds 10 msec
Ended Job = job_1533789743141_0049
Loading data to table yinzhengjie.stu_buck
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 2   Cumulative CPU: 8.01 sec   HDFS Read: 11021 HDFS Write: 303 SUCCESS
Total MapReduce CPU Time Spent: 8 seconds 10 msec
OK
id    name
Time taken: 95.111 seconds
hive (yinzhengjie)> 
hive (yinzhengjie)> select * from stu_buck;                                #查询分桶的数据
OK
stu_buck.id    stu_buck.name
1016    ss16
1012    ss12
1008    ss8
1004    ss4
1001    ss1
1013    ss13
1005    ss5
1009    ss9
1014    ss14
1010    ss10
1006    ss6
1002    ss2
1015    ss15
1007    ss7
1003    ss3
1011    ss11
Time taken: 0.073 seconds, Fetched: 16 row(s)
hive (yinzhengjie)> 
分桶表-创建分桶表时,数据通过子查询的方式导入(hive (yinzhengjie)> insert into table stu_buck select id, name from stu;)
hive (yinzhengjie)> show tables;                                    #查看当前数据库已经存在的表
OK
tab_name
dept_partition
raw_logs
student
teacher
teacherbak
teachercopy
users
Time taken: 0.071 seconds, Fetched: 7 row(s)
hive (yinzhengjie)> ALTER TABLE users RENAME TO myusers;            #重命名表,将users表名改为myusers
OK
Time taken: 0.341 seconds
hive (yinzhengjie)> show tables;                                    #再次查看当前数据库已经存在的表,发现表名称已经修改了
OK
tab_name
dept_partition
myusers
raw_logs
student
teacher
teacherbak
teachercopy
Time taken: 0.011 seconds, Fetched: 7 row(s)
hive (yinzhengjie)> 
修改表-重名名表实操案例(hive (yinzhengjie)> ALTER TABLE users RENAME TO myusers;)
hive (yinzhengjie)> desc dept_partition;                                        #查看表结构
OK
col_name    data_type    comment
deptno                  int                                         
dname                   string                                      
loc                     string                                      
month                   string                                      
          
# Partition Information          
# col_name                data_type               comment             
          
month                   string                                      
Time taken: 0.054 seconds, Fetched: 9 row(s)
hive (yinzhengjie)> ALTER TABLE dept_partition ADD COLUMNS(desc string);        #添加新字段(列),温馨提示:ADD是代表新增一字段,字段位置在所有列后面(partition列前),REPLACE则是表示替换表中所有字段。
OK
Time taken: 0.176 seconds
hive (yinzhengjie)> desc dept_partition;                                        #再次查看表结构
OK
col_name    data_type    comment
deptno                  int                                         
dname                   string                                      
loc                     string                                      
desc                    string                                      
month                   string                                      
          
# Partition Information          
# col_name                data_type               comment             
          
month                   string                                      
Time taken: 0.059 seconds, Fetched: 10 row(s)
hive (yinzhengjie)> 
修改表-添加列实操案例(hive (yinzhengjie)> ALTER TABLE dept_partition ADD COLUMNS(desc string);)
hive (yinzhengjie)> desc dept_partition;                                                #查看表结构
OK
col_name    data_type    comment
deptno                  int                                         
dname                   string                                      
loc                     string                                      
month                   string                                      
          
# Partition Information          
# col_name                data_type               comment             
          
month                   string                                      
Time taken: 0.054 seconds, Fetched: 9 row(s)
hive (yinzhengjie)> 
hive (yinzhengjie)> alter table dept_partition change column desc deptdesc string;        #修改列名实操案例
OK
Time taken: 0.153 seconds
hive (yinzhengjie)> desc dept_partition;
OK
col_name    data_type    comment
deptno                  int                                         
dname                   string                                      
loc                     string                                      
deptdesc                string                                      
month                   string                                      
          
# Partition Information          
# col_name                data_type               comment             
          
month                   string                                      
Time taken: 0.027 seconds, Fetched: 10 row(s)
hive (yinzhengjie)> 
修改表-修改列名实操案例(hive (yinzhengjie)> alter table dept_partition change column desc deptdesc string;)
hive (yinzhengjie)> desc dept_partition;
OK
col_name    data_type    comment
deptno                  int                                         
dname                   string                                      
loc                     string                                      
deptdesc                string                                      
month                   string                                      
          
# Partition Information          
# col_name                data_type               comment             
          
month                   string                                      
Time taken: 0.031 seconds, Fetched: 10 row(s)
hive (yinzhengjie)> alter table dept_partition replace columns(deptno string, dname string, loc string);         #替换列名,温馨提示:ADD是代表新增一字段,字段位置在所有列后面(partition列前),REPLACE则是表示替换表中所有字段。
OK
Time taken: 0.152 seconds
hive (yinzhengjie)> desc dept_partition;
OK
col_name    data_type    comment
deptno                  string                                      
dname                   string                                      
loc                     string                                      
month                   string                                      
          
# Partition Information          
# col_name                data_type               comment             
          
month                   string                                      
Time taken: 0.027 seconds, Fetched: 9 row(s)
hive (yinzhengjie)> 
修改表-替换列名实操案例(hive (yinzhengjie)> alter table dept_partition replace columns(deptno string, dname string, loc string);)
hive (yinzhengjie)> show tables;
OK
tab_name
dept_partition
myusers
raw_logs
student
teacher
teacherbak
teachercopy
Time taken: 0.015 seconds, Fetched: 7 row(s)
hive (yinzhengjie)> DROP TABLE dept_partition;         #删除指定的表
OK
Time taken: 0.214 seconds
hive (yinzhengjie)> show tables;
OK
tab_name
myusers
raw_logs
student
teacher
teacherbak
teachercopy
Time taken: 0.015 seconds, Fetched: 6 row(s)
hive (yinzhengjie)> 
修改表-删除指定的表(hive (yinzhengjie)> DROP TABLE dept_partition; )

3>.DML数据操作

数据导入-向表中装载数据(Load)语法
    hive>load data [local] inpath '/home/yinzhengjie/download/user.txt' [overwrite] into table student [partition (partcol1=val1,…)];

以上参数说明:
        1>.load data:表示加载数据
        2>.local:表示从本地加载数据到hive表;否则从HDFS加载数据到hive表
        3>.inpath:表示加载数据的路径
        4>.overwrite:表示覆盖表中已有数据,否则表示追加
        5>.into table:表示加载到哪张表
        6>.student:表示具体的表
        7>.partition:表示上传到指定分区
数据导入-向表中装载数据(Load)语法(hive>load data [local] inpath '/home/yinzhengjie/download/user.txt' [overwrite] into table student [partition (partcol1=val1,…)];)
[yinzhengjie@s101 download]$ cat /home/yinzhengjie/download/students.txt 
1    sunwukong
2    zhubajie
3    shaheshang
4    bailongma
5    tangsanzang
[yinzhengjie@s101 download]$ 


登录hive创建表并将数据导入进去:

hive (yinzhengjie)> create table xiyouji(
                  >     id string, 
                  >     name string
                  > )
                  > row format delimited fields terminated by '\t';                
OK
Time taken: 0.635 seconds
hive (yinzhengjie)> 
hive (yinzhengjie)> load data local inpath '/home/yinzhengjie/download/students.txt' into table yinzhengjie.xiyouji;
Loading data to table yinzhengjie.xiyouji
OK
Time taken: 10.337 seconds
hive (yinzhengjie)>
hive (yinzhengjie)> select * from xiyouji;
OK
xiyouji.id    xiyouji.name
1    sunwukong
2    zhubajie
3    shaheshang
4    bailongma
5    tangsanzang
Time taken: 0.131 seconds, Fetched: 5 row(s)
hive (yinzhengjie)> 
数据导入-向表中装载数据(Load)实操案例之从本地导入数据(hive (yinzhengjie)> load data local inpath '/home/yinzhengjie/download/students.txt' into table yinzhengjie.xiyouji;)
hive (yinzhengjie)> select * from xiyouji;
OK
xiyouji.id    xiyouji.name
1    sunwukong
2    zhubajie
3    shaheshang
4    bailongma
5    tangsanzang
Time taken: 0.207 seconds, Fetched: 5 row(s)
hive (yinzhengjie)> truncate table xiyouji;                        #温馨提示:Truncate只能删除管理表,不能删除外部表中数据
OK
Time taken: 0.169 seconds
hive (yinzhengjie)> select * from xiyouji;
OK
xiyouji.id    xiyouji.name
Time taken: 0.086 seconds
hive (yinzhengjie)> 
清除表中数据(hive (yinzhengjie)> truncate table xiyouji;)
hive (yinzhengjie)> select * from xiyouji;                                                                        #查看表中数据是空的
OK
xiyouji.id    xiyouji.name
Time taken: 0.077 seconds
hive (yinzhengjie)> dfs -put /home/yinzhengjie/download/students.txt /home/yinzhengjie/data;                    #上传文件到HDFS
hive (yinzhengjie)> dfs -cat /home/yinzhengjie/data/students.txt;
1    sunwukong
2    zhubajie
3    shaheshang
4    bailongma
5    tangsanzang
hive (yinzhengjie)> load data inpath '/home/yinzhengjie/data/students.txt' into table yinzhengjie.xiyouji;        #加载HDFS上数据,注意数据会被剪切走哟
Loading data to table yinzhengjie.xiyouji
OK
Time taken: 0.228 seconds
hive (yinzhengjie)> select * from xiyouji;                                                                        #再次查看表中数据
OK
xiyouji.id    xiyouji.name
1    sunwukong
2    zhubajie
3    shaheshang
4    bailongma
5    tangsanzang
Time taken: 0.073 seconds, Fetched: 5 row(s)
hive (yinzhengjie)> 
数据导入-向表中装载数据(Load)实操案例之从HDFS导入数据(hive (yinzhengjie)> load data inpath '/home/yinzhengjie/data/students.txt' into table yinzhengjie.xiyouji;)
hive (yinzhengjie)> select * from xiyouji;                                                                                    #查看上传之前表中数据
OK
xiyouji.id    xiyouji.name
1    sunwukong
2    zhubajie
3    shaheshang
4    bailongma
5    tangsanzang
1    sunwukong
2    zhubajie
3    shaheshang
4    bailongma
5    tangsanzang
1    sunwukong
2    zhubajie
3    shaheshang
4    bailongma
5    tangsanzang
Time taken: 0.077 seconds, Fetched: 15 row(s)
hive (yinzhengjie)> dfs -put /home/yinzhengjie/download/students.txt /home/yinzhengjie/data;                                #上传文件到HDFS
hive (yinzhengjie)> dfs -cat /home/yinzhengjie/data/students.txt;                                                            #查看上传到HDFS的文件内容
1    sunwukong
2    zhubajie
3    shaheshang
4    bailongma
5    tangsanzang
hive (yinzhengjie)> load data inpath '/home/yinzhengjie/data/students.txt' overwrite into table yinzhengjie.xiyouji;        #加载HDFS上数据覆盖表中已有的数据,注意数据会被剪切走哟
Loading data to table yinzhengjie.xiyouji
OK
Time taken: 0.346 seconds
hive (yinzhengjie)> select * from xiyouji;                                                                                    #再次查看表中数据。发现之前的数据已经被覆盖了
OK
xiyouji.id    xiyouji.name
1    sunwukong
2    zhubajie
3    shaheshang
4    bailongma
5    tangsanzang
Time taken: 0.086 seconds, Fetched: 5 row(s)
hive (yinzhengjie)> 
    
数据导入-向表中装载数据(Load)实操案例之加载数据覆盖表中已有的数据(hive (yinzhengjie)> load data inpath '/home/yinzhengjie/data/students.txt' overwrite into table yinzhengjie.xiyouji;)
hive (yinzhengjie)> drop table xiyouji;                                                #删除之前的测试表
OK
Time taken: 1.645 seconds
hive (yinzhengjie)> 
hive (yinzhengjie)> create table xiyouji(
                  >     id int, 
                  >     name string
                  > ) 
                  > partitioned by (position string)
                  > row format delimited fields terminated by '\t';                                                #创建一张分区表
OK
Time taken: 0.137 seconds
hive (yinzhengjie)> 
hive (yinzhengjie)> insert into table  xiyouji partition(position='wuzhishan') values(1,'孙悟空');                #基本插入数据
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180809181325_1275bf7f-0089-4d56-afaf-ecd310467701
Total jobs = 3
Launching Job 1 out of 3
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1533789743141_0004, Tracking URL = http://s101:8088/proxy/application_1533789743141_0004/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0004
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0
2018-08-09 18:14:06,514 Stage-1 map = 0%,  reduce = 0%
2018-08-09 18:15:07,295 Stage-1 map = 0%,  reduce = 0%
2018-08-09 18:15:31,461 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.12 sec
MapReduce Total cumulative CPU time: 2 seconds 620 msec
Ended Job = job_1533789743141_0004
Stage-4 is selected by condition resolver.
Stage-3 is filtered out by condition resolver.
Stage-5 is filtered out by condition resolver.
Moving data to directory hdfs://mycluster/user/hive/warehouse/yinzhengjie.db/xiyouji/position=wuzhishan/.hive-staging_hive_2018-08-09_18-13-25_269_2859222729747025112-1/-ext-10000
Loading data to table yinzhengjie.xiyouji partition (position=wuzhishan)
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1   Cumulative CPU: 2.62 sec   HDFS Read: 4190 HDFS Write: 106 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 620 msec
OK
_col0    _col1
Time taken: 136.695 seconds
hive (yinzhengjie)> select * from xiyouji;
OK
xiyouji.id    xiyouji.name    xiyouji.position
1    孙悟空    wuzhishan
Time taken: 0.169 seconds, Fetched: 1 row(s)
hive (yinzhengjie)> 
数据导入-基本插入数据(hive (yinzhengjie)> insert into table xiyouji partition(position='wuzhishan') values(1,'孙悟空');)温馨提示:position的值最好不要设置成中文!!!
hive (yinzhengjie)> select * from xiyouji;                                        #查看表中的数据
OK
xiyouji.id    xiyouji.name    xiyouji.position
1    孙悟空    wuzhishan
Time taken: 0.117 seconds, Fetched: 1 row(s)
hive (yinzhengjie)> insert overwrite table xiyouji partition(position='sandabaigujing') select id, name from xiyouji where position='wuzhishan';        #根据单张表查询结果向表中插入数据
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180809182335_4f9c3b89-bc30-4afb-95f7-bd294520afe9
Total jobs = 3
Launching Job 1 out of 3
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1533789743141_0005, Tracking URL = http://s101:8088/proxy/application_1533789743141_0005/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0005
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0
2018-08-09 18:23:58,547 Stage-1 map = 0%,  reduce = 0%
2018-08-09 18:24:23,779 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.61 sec
MapReduce Total cumulative CPU time: 2 seconds 610 msec
Ended Job = job_1533789743141_0005
Stage-4 is selected by condition resolver.
Stage-3 is filtered out by condition resolver.
Stage-5 is filtered out by condition resolver.
Moving data to directory hdfs://mycluster/user/hive/warehouse/yinzhengjie.db/xiyouji/position=sandabaigujing/.hive-staging_hive_2018-08-09_18-23-35_915_1607485649232911242-1/-ext-10000
Loading data to table yinzhengjie.xiyouji partition (position=sandabaigujing)
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1   Cumulative CPU: 2.61 sec   HDFS Read: 4068 HDFS Write: 111 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 610 msec
OK
id    name
Time taken: 50.478 seconds
hive (yinzhengjie)> select * from xiyouji;                                        #再次查看表中的数据,你会发现多了一条数据,只不过position的值发生了变化
OK
xiyouji.id    xiyouji.name    xiyouji.position
1    孙悟空    sandabaigujing
1    孙悟空    wuzhishan
Time taken: 0.105 seconds, Fetched: 2 row(s)
hive (yinzhengjie)> 
数据导入-根据单张表查询结果向表中插入数据(hive (yinzhengjie)> insert overwrite table xiyouji partition(position='sandabaigujing') select id, name from xiyouji where position='wuzhishan';)
hive (yinzhengjie)> select * from xiyouji;                                                            #查看数据表当前的数据
OK
xiyouji.id    xiyouji.name    xiyouji.position
1    孙悟空    sandabaigujing
1    孙悟空    wuzhishan
Time taken: 0.14 seconds, Fetched: 2 row(s)
hive (yinzhengjie)> from xiyouji
                  > insert overwrite table xiyouji partition(position='nverguo')
                  > select id, name where position='wuzhishan'
                  > insert overwrite table xiyouji partition(position='zhenjiameihouwang')
                  > select id, name where position='wuzhishan';                                        #根据多张表查询结果多插入模式,我测试时只插入了2条数据
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180809183740_ef71ba4e-acec-4ef7-8510-0f01c57bd49d
Total jobs = 5
Launching Job 1 out of 5
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1533789743141_0009, Tracking URL = http://s101:8088/proxy/application_1533789743141_0009/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0009
Hadoop job information for Stage-2: number of mappers: 1; number of reducers: 0
2018-08-09 18:38:07,195 Stage-2 map = 0%,  reduce = 0%
2018-08-09 18:38:39,132 Stage-2 map = 100%,  reduce = 0%, Cumulative CPU 2.08 sec
MapReduce Total cumulative CPU time: 2 seconds 80 msec
Ended Job = job_1533789743141_0009
Stage-5 is selected by condition resolver.
Stage-4 is filtered out by condition resolver.
Stage-6 is filtered out by condition resolver.
Stage-11 is selected by condition resolver.
Stage-10 is filtered out by condition resolver.
Stage-12 is filtered out by condition resolver.
Moving data to directory hdfs://mycluster/user/hive/warehouse/yinzhengjie.db/xiyouji/position=nverguo/.hive-staging_hive_2018-08-09_18-37-40_573_1576742180177937358-1/-ext-10000
Moving data to directory hdfs://mycluster/user/hive/warehouse/yinzhengjie.db/xiyouji/position=zhenjiameihouwang/.hive-staging_hive_2018-08-09_18-37-40_573_1576742180177937358-1/-ext-10002
Loading data to table yinzhengjie.xiyouji partition (position=nverguo)
Loading data to table yinzhengjie.xiyouji partition (position=zhenjiameihouwang)
MapReduce Jobs Launched: 
Stage-Stage-2: Map: 1   Cumulative CPU: 2.08 sec   HDFS Read: 5239 HDFS Write: 218 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 80 msec
OK
id    name
Time taken: 63.367 seconds
hive (yinzhengjie)> select * from xiyouji;                                                            #再次查看数据表当前的数据,你会发现又多了2条数据
OK
xiyouji.id    xiyouji.name    xiyouji.position
1    孙悟空    nverguo
1    孙悟空    sandabaigujing
1    孙悟空    wuzhishan
1    孙悟空    zhenjiameihouwang
Time taken: 0.141 seconds, Fetched: 4 row(s)
hive (yinzhengjie)> 
数据导入-多插入模式(根据多张表查询结果)案例展示
hive (yinzhengjie)> select * from xiyouji;                                                #查看表中的数据
OK
xiyouji.id    xiyouji.name    xiyouji.position
1    孙悟空    nverguo
1    孙悟空    sandabaigujing
1    孙悟空    wuzhishan
1    孙悟空    zhenjiameihouwang
Time taken: 0.087 seconds, Fetched: 4 row(s)
hive (yinzhengjie)> create table if not exists xiyouji2  as select id, name from xiyouji;        #根据查询结果创建表(查询的结果会添加到新创建的表中)
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180809184435_d18b1d0b-3454-4fbe-bffa-ec501fa5fd09
Total jobs = 3
Launching Job 1 out of 3
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1533789743141_0010, Tracking URL = http://s101:8088/proxy/application_1533789743141_0010/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0010
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0
2018-08-09 18:44:53,798 Stage-1 map = 0%,  reduce = 0%
2018-08-09 18:45:26,674 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.39 sec
MapReduce Total cumulative CPU time: 2 seconds 390 msec
Ended Job = job_1533789743141_0010
Stage-4 is selected by condition resolver.
Stage-3 is filtered out by condition resolver.
Stage-5 is filtered out by condition resolver.
Moving data to directory hdfs://mycluster/user/hive/warehouse/yinzhengjie.db/.hive-staging_hive_2018-08-09_18-44-35_127_6564594081639052485-1/-ext-10002
Moving data to directory hdfs://mycluster/user/hive/warehouse/yinzhengjie.db/xiyouji2
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1   Cumulative CPU: 2.39 sec   HDFS Read: 5463 HDFS Write: 124 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 390 msec
OK
id    name
Time taken: 54.907 seconds
hive (yinzhengjie)> select * from xiyouji2;                                                #查看新生成表的数据
OK
xiyouji2.id    xiyouji2.name
1    孙悟空
1    孙悟空
1    孙悟空
1    孙悟空
Time taken: 0.065 seconds, Fetched: 4 row(s)
hive (yinzhengjie)> 
数据导入-查询语句中创建表并加载数据(hive (yinzhengjie)> create table if not exists xiyouji2 as select id, name from xiyouji;)
hive (yinzhengjie)> create table if not exists Student(                                            
                  >     id int, 
                  >     name string
                  > )
                  > row format delimited fields terminated by '\t'
                  > location '/home/yinzhengjie/data/students.txt';                                                    #创建表,并指定在hdfs上的加载数据路径
OK
Time taken: 0.017 seconds
hive (yinzhengjie)> 
hive (yinzhengjie)> dfs -put /home/yinzhengjie/download/students.txt  /home/yinzhengjie/data/students.txt;            #上传数据到hdfs上
hive (yinzhengjie)>  dfs -cat /home/yinzhengjie/data/students.txt;                                                    #查看上传到hdfs上的数据,这个数据会被Student表自动加载。
1    sunwukong
2    zhubajie
3    shaheshang
4    bailongma
5    tangsanzang
hive (yinzhengjie)> 
hive (yinzhengjie)> select * from Student;                                                                            #我们会发现Student表会自动加载数据,神奇不?
OK
student.id    student.name
1    sunwukong
2    zhubajie
3    shaheshang
4    bailongma
5    tangsanzang
Time taken: 0.054 seconds, Fetched: 5 row(s)
hive (yinzhengjie)>
数据导入-创建表时通过Location指定加载数据路径案例展示
hive (yinzhengjie)> import table xiyoujihouzhuan partition(position='zhenjiameihouwang') from '/home/yinzhengjie/data/xiyouji2';            #从hdfs中导入指定的分区到指定的表中
Copying data from hdfs://mycluster/home/yinzhengjie/data/xiyouji2/position=zhenjiameihouwang
Copying file: hdfs://mycluster/home/yinzhengjie/data/xiyouji2/position=zhenjiameihouwang/000000_0
Loading data to table yinzhengjie.xiyoujihouzhuan partition (position=zhenjiameihouwang)
OK
Time taken: 3.966 seconds
hive (yinzhengjie)> select * from xiyoujihouzhuan;                    #查看是否导入成功
OK
xiyoujihouzhuan.id    xiyoujihouzhuan.name    xiyoujihouzhuan.position
1    孙悟空    zhenjiameihouwang
Time taken: 0.293 seconds, Fetched: 1 row(s)
hive (yinzhengjie)> import table xiyoujihouzhuan partition(position='nverguo') from '/home/yinzhengjie/data/xiyouji2';
Copying data from hdfs://mycluster/home/yinzhengjie/data/xiyouji2/position=nverguo
Copying file: hdfs://mycluster/home/yinzhengjie/data/xiyouji2/position=nverguo/000000_0
Loading data to table yinzhengjie.xiyoujihouzhuan partition (position=nverguo)
OK
Time taken: 0.751 seconds
hive (yinzhengjie)> import table xiyoujihouzhuan partition(position='wuzhishan') from '/home/yinzhengjie/data/xiyouji2';
Copying data from hdfs://mycluster/home/yinzhengjie/data/xiyouji2/position=wuzhishan
Copying file: hdfs://mycluster/home/yinzhengjie/data/xiyouji2/position=wuzhishan/000000_0
Loading data to table yinzhengjie.xiyoujihouzhuan partition (position=wuzhishan)
OK
Time taken: 1.363 seconds
hive (yinzhengjie)> select * from xiyoujihouzhuan;
OK
xiyoujihouzhuan.id    xiyoujihouzhuan.name    xiyoujihouzhuan.position
1    孙悟空    nverguo
1    孙悟空    wuzhishan
1    孙悟空    zhenjiameihouwang
Time taken: 0.488 seconds, Fetched: 3 row(s)
hive (yinzhengjie)>
数据导入-Import数据到指定Hive表中,温馨提示:先用export导出后,再将数据导入。(hive (yinzhengjie)> import table xiyoujihouzhuan partition(position='wuzhishan') from '/home/yinzhengjie/data/xiyouji2';)
hive (yinzhengjie)> insert overwrite local directory '/home/yinzhengjie/download/xiyouji' select * from xiyouji;                      #将查询的结果导出到本地路径,注意这里导出的是一个目录哟
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180809190854_cc079ee4-1d8b-43a0-b360-89ff65fb39fb
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1533789743141_0011, Tracking URL = http://s101:8088/proxy/application_1533789743141_0011/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0011
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0
2018-08-09 19:09:25,742 Stage-1 map = 0%,  reduce = 0%
2018-08-09 19:10:05,644 Stage-1 map = 50%,  reduce = 0%, Cumulative CPU 1.96 sec
2018-08-09 19:10:07,764 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.36 sec
MapReduce Total cumulative CPU time: 2 seconds 360 msec
Ended Job = job_1533789743141_0011
Moving data to local directory /home/yinzhengjie/download/xiyouji
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1   Cumulative CPU: 2.36 sec   HDFS Read: 5554 HDFS Write: 99 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 360 msec
OK
xiyouji.id    xiyouji.name    xiyouji.position
Time taken: 77.687 seconds
hive (yinzhengjie)> ! cat /home/yinzhengjie/download/xiyouji/000000_0;                                                                    #查看导出到本地的文本信息
1孙悟空nverguo
1孙悟空sandabaigujing
1孙悟空wuzhishan
1孙悟空zhenjiameihouwang
hive (yinzhengjie)> 
数据导出-将查询的结果导出到本地(hive (yinzhengjie)> insert overwrite local directory '/home/yinzhengjie/download/xiyouji' select * from xiyouji;)
hive (yinzhengjie)> insert overwrite local directory '/home/yinzhengjie/download/xiyouji2'
                  > ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
                  > select * from xiyouji;                                                                #我们指定以"\t"进行风格字段
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180809191439_7461de80-7522-4e07-82ac-fd54b85a0891
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1533789743141_0012, Tracking URL = http://s101:8088/proxy/application_1533789743141_0012/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0012
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0
2018-08-09 19:15:50,162 Stage-1 map = 0%,  reduce = 0%
2018-08-09 19:16:14,236 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.31 sec
MapReduce Total cumulative CPU time: 2 seconds 310 msec
Ended Job = job_1533789743141_0012
Moving data to local directory /home/yinzhengjie/download/xiyouji2
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1   Cumulative CPU: 2.31 sec   HDFS Read: 5575 HDFS Write: 99 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 310 msec
OK
xiyouji.id    xiyouji.name    xiyouji.position
Time taken: 100.57 seconds
hive (yinzhengjie)> ! cat /home/yinzhengjie/download/xiyouji2/000000_0;                                    #查看导出的数据内容
1    孙悟空    nverguo
1    孙悟空    sandabaigujing
1    孙悟空    wuzhishan
1    孙悟空    zhenjiameihouwang
hive (yinzhengjie)> 
数据导出-将查询的结果格式化导出到本地(hive (yinzhengjie)> insert overwrite local directory '/home/yinzhengjie/download/xiyouji2' ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' select * from xiyouji;)
hive (yinzhengjie)> insert overwrite directory '/home/yinzhengjie/data/xiyouji'
                  > ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
                  > select * from xiyouji;                                                                #将查询的结果导出到HDFS上
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180809192105_183285e8-bf4e-4044-93c5-4312a8a31716
Total jobs = 3
Launching Job 1 out of 3
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1533789743141_0013, Tracking URL = http://s101:8088/proxy/application_1533789743141_0013/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0013
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0
2018-08-09 19:21:39,136 Stage-1 map = 0%,  reduce = 0%
2018-08-09 19:22:30,081 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.38 sec
MapReduce Total cumulative CPU time: 2 seconds 380 msec
Ended Job = job_1533789743141_0013
Stage-3 is selected by condition resolver.
Stage-2 is filtered out by condition resolver.
Stage-4 is filtered out by condition resolver.
Moving data to directory hdfs://mycluster/home/yinzhengjie/data/xiyouji/.hive-staging_hive_2018-08-09_19-21-05_012_3955068750863516339-1/-ext-10000
Moving data to directory /home/yinzhengjie/data/xiyouji
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1   Cumulative CPU: 2.38 sec   HDFS Read: 5455 HDFS Write: 99 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 380 msec
OK
xiyouji.id    xiyouji.name    xiyouji.position
Time taken: 88.306 seconds
hive (yinzhengjie)> dfs -cat /home/yinzhengjie/data/xiyouji/000000_0;                                    #查询导出在hdfs上的数据
1    孙悟空    nverguo
1    孙悟空    sandabaigujing
1    孙悟空    wuzhishan
1    孙悟空    zhenjiameihouwang
hive (yinzhengjie)> 
数据导出-将查询的结果导出到HDFS上(hive (yinzhengjie)> insert overwrite directory '/home/yinzhengjie/data/xiyouji' ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' select * from xiyouji;)
hive (yinzhengjie)> dfs -get  /home/yinzhengjie/data/xiyouji/000000_0  /home/yinzhengjie/download/xiyouji3;                #通过Hadoop命令将数据导出到本地
hive (yinzhengjie)> ! cat /home/yinzhengjie/download/xiyouji3;                                                            #查看导出到Linux的文本信息
1    孙悟空    nverguo
1    孙悟空    sandabaigujing
1    孙悟空    wuzhishan
1    孙悟空    zhenjiameihouwang
hive (yinzhengjie)> 
数据导出-Hadoop命令导出到本地(hive (yinzhengjie)> dfs -get /home/yinzhengjie/data/xiyouji/000000_0 /home/yinzhengjie/download/xiyouji3;)
hive (yinzhengjie)> 
hive (yinzhengjie)> export table yinzhengjie.xiyouji to '/home/yinzhengjie/data/xiyouji2';                            #通过Export将数据导出到HDFS上
Copying data from file:/home/yinzhengjie/yinzhengjie/46c2c137-93f5-4f30-9855-6b0d3d62c227/hive_2018-08-09_19-30-58_906_1594217512913959561-1/-local-10000/_metadata
Copying file: file:/home/yinzhengjie/yinzhengjie/46c2c137-93f5-4f30-9855-6b0d3d62c227/hive_2018-08-09_19-30-58_906_1594217512913959561-1/-local-10000/_metadata
Copying data from hdfs://mycluster/user/hive/warehouse/yinzhengjie.db/xiyouji/position=???
Copying file: hdfs://mycluster/user/hive/warehouse/yinzhengjie.db/xiyouji/position=五指山/000000_0
Copying data from hdfs://mycluster/user/hive/warehouse/yinzhengjie.db/xiyouji/position=nverguo
Copying file: hdfs://mycluster/user/hive/warehouse/yinzhengjie.db/xiyouji/position=nverguo/000000_0
Copying data from hdfs://mycluster/user/hive/warehouse/yinzhengjie.db/xiyouji/position=sandabaigujing
Copying file: hdfs://mycluster/user/hive/warehouse/yinzhengjie.db/xiyouji/position=sandabaigujing/000000_0
Copying data from hdfs://mycluster/user/hive/warehouse/yinzhengjie.db/xiyouji/position=wuzhishan
Copying file: hdfs://mycluster/user/hive/warehouse/yinzhengjie.db/xiyouji/position=wuzhishan/000000_0
Copying data from hdfs://mycluster/user/hive/warehouse/yinzhengjie.db/xiyouji/position=zhenjiameihouwang
Copying file: hdfs://mycluster/user/hive/warehouse/yinzhengjie.db/xiyouji/position=zhenjiameihouwang/000000_0
OK
Time taken: 0.978 seconds
hive (yinzhengjie)> dfs -cat /home/yinzhengjie/data/xiyouji2/position=wuzhishan/000000_0;
1    孙悟空
hive (yinzhengjie)> dfs -cat /home/yinzhengjie/data/xiyouji2/position=nverguo/000000_0;
1    孙悟空
hive (yinzhengjie)> dfs -cat /home/yinzhengjie/data/xiyouji2/position=sandabaigujing/000000_0;
1    孙悟空
hive (yinzhengjie)> dfs -cat /home/yinzhengjie/data/xiyouji2/position=zhenjiameihouwang/000000_0;
1    孙悟空
hive (yinzhengjie)> 
数据导出-通过Export将数据导出到HDFS上(hive (yinzhengjie)> export table yinzhengjie.xiyouji to '/home/yinzhengjie/data/xiyouji2';)
[yinzhengjie@s101 ~]$ hive -e 'select * from yinzhengjie.xiyouji;' > /home/yinzhengjie/download/xiyouji6                            #通过命令行访问hive,并将数据重定向到本地的一个文件中。
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/soft/apache-hive-2.1.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hbase-1.2.6/lib/phoenix-4.10.0-HBase-1.2-client.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.

Logging initialized using configuration in file:/soft/apache-hive-2.1.1-bin/conf/hive-log4j2.properties Async: true
OK
Time taken: 20.367 seconds, Fetched: 4 row(s)
[yinzhengjie@s101 ~]$ 
[yinzhengjie@s101 ~]$ cat /home/yinzhengjie/download/xiyouji6                #查看查询的结果
xiyouji.id    xiyouji.name    xiyouji.position
1    孙悟空    nverguo
1    孙悟空    sandabaigujing
1    孙悟空    wuzhishan
1    孙悟空    zhenjiameihouwang
[yinzhengjie@s101 ~]$ 
数据导出-Hive Shell 命令导出([yinzhengjie@s101 ~]$ hive -e 'select * from yinzhengjie.xiyouji;' > /home/yinzhengjie/download/xiyouji6)

4>.查询

   关于HQL的查询(select)语法,官网已经进行了详细说明,我这里就不搬运了,详情请参考:https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Select。

hive (yinzhengjie)> select * from teacher;                #全表查询
OK
teacher.id    teacher.name
70    Dennis MacAlistair Ritchie
49    Linus Benedict Torvalds
68    Bjarne Stroustrup
62    Guido van Rossum
63    James Gosling
60    Martin Odersky
62    Rob Pike
50    Rasmus Lerdorf
50    Brendan Eich
Time taken: 0.108 seconds, Fetched: 9 row(s)
hive (yinzhengjie)> 
hive (yinzhengjie)> select name from teacher;            #选择特定列查询
OK
name
Dennis MacAlistair Ritchie
Linus Benedict Torvalds
Bjarne Stroustrup
Guido van Rossum
James Gosling
Martin Odersky
Rob Pike
Rasmus Lerdorf
Brendan Eich
Time taken: 0.1 seconds, Fetched: 9 row(s)
hive (yinzhengjie)> 



温馨提示:
    1>.SQL 语言大小写不敏感。 
    2>.SQL 可以写在一行或者多行
    3>.关键字不能被缩写也不能分行
    4>.各子句一般要分行写。
    5>.使用缩进提高语句的可读性。
基本查询- 全表和特定列查询(hive (yinzhengjie)> select name from teacher;)
hive (yinzhengjie)> select id AS tid, name AS Tname from teacher;
OK
tid    tname
70    Dennis MacAlistair Ritchie
49    Linus Benedict Torvalds
68    Bjarne Stroustrup
62    Guido van Rossum
63    James Gosling
60    Martin Odersky
62    Rob Pike
50    Rasmus Lerdorf
50    Brendan Eich
Time taken: 0.088 seconds, Fetched: 9 row(s)
hive (yinzhengjie)> 



温馨提示:
    1>.重命名一个列。
    2>.便于计算。
    3>.紧跟列名,也可以在列名和别名之间加入关键字‘AS’ 
基本查询- 列别名操作案例(hive (yinzhengjie)> select id AS tid, name AS Tname from teacher;)
hive (yinzhengjie)> select id AS age, name AS Tname from teacher;
OK
age    tname
70    Dennis MacAlistair Ritchie
49    Linus Benedict Torvalds
68    Bjarne Stroustrup
62    Guido van Rossum
63    James Gosling
60    Martin Odersky
62    Rob Pike
50    Rasmus Lerdorf
50    Brendan Eich
Time taken: 0.157 seconds, Fetched: 9 row(s)
hive (yinzhengjie)> select id+20 AS age, name AS Tname from teacher;
OK
age    tname
90    Dennis MacAlistair Ritchie
69    Linus Benedict Torvalds
88    Bjarne Stroustrup
82    Guido van Rossum
83    James Gosling
80    Martin Odersky
82    Rob Pike
70    Rasmus Lerdorf
70    Brendan Eich
Time taken: 0.091 seconds, Fetched: 9 row(s)
hive (yinzhengjie)> 




算术运算符                    描述
    A+B                      A和B 相加
    A-B                      A减去B
    A*B                      A和B 相乘
    A/B                      A除以B
    A%B                      A对B取余
    A&B                      A和B按位取与
    A|B                      A和B按位取或
    A^B                      A和B按位取异或
    ~A                      A按位取反
基本查询-通过算术运算符将查询结果的数据加20后在显示(hive (yinzhengjie)> select id+20 AS age, name AS Tname from teacher;)
hive (yinzhengjie)> select count(*)cnt from teacher;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180809202019_6a4b05d8-8807-410b-af4e-3c1839e0bdc6
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Starting Job = job_1533789743141_0014, Tracking URL = http://s101:8088/proxy/application_1533789743141_0014/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0014
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2018-08-09 20:21:06,776 Stage-1 map = 0%,  reduce = 0%
2018-08-09 20:21:35,994 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.61 sec
2018-08-09 20:22:19,562 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 5.51 sec
MapReduce Total cumulative CPU time: 5 seconds 510 msec
Ended Job = job_1533789743141_0014
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 1   Cumulative CPU: 5.51 sec   HDFS Read: 7766 HDFS Write: 101 SUCCESS
Total MapReduce CPU Time Spent: 5 seconds 510 msec
OK
cnt
9
Time taken: 123.864 seconds, Fetched: 1 row(s)
hive (yinzhengjie)> 
基本查询- 常用函数之求总行数(hive (yinzhengjie)> select count(*)cnt from teacher;)
hive (yinzhengjie)> select max(id) max_age from teacher;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180809202410_0146f895-4c54-440f-aa1b-bee4fb566b91
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Starting Job = job_1533789743141_0015, Tracking URL = http://s101:8088/proxy/application_1533789743141_0015/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0015
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2018-08-09 20:24:47,751 Stage-1 map = 0%,  reduce = 0%
2018-08-09 20:25:09,196 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.46 sec
2018-08-09 20:25:22,584 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 5.08 sec
MapReduce Total cumulative CPU time: 5 seconds 80 msec
Ended Job = job_1533789743141_0015
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 1   Cumulative CPU: 5.08 sec   HDFS Read: 7950 HDFS Write: 102 SUCCESS
Total MapReduce CPU Time Spent: 5 seconds 80 msec
OK
max_age
70
Time taken: 74.014 seconds, Fetched: 1 row(s)
hive (yinzhengjie)> 
基本查询- 常用函数之求年龄的最大值(hive (yinzhengjie)> select max(id) max_age from teacher;)
hive (yinzhengjie)> select min(id) min_age from teacher;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180809202623_b1b99783-b7d3-4994-901e-4e901795a128
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Starting Job = job_1533789743141_0016, Tracking URL = http://s101:8088/proxy/application_1533789743141_0016/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0016
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2018-08-09 20:26:41,646 Stage-1 map = 0%,  reduce = 0%
2018-08-09 20:27:10,432 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.34 sec
2018-08-09 20:27:38,200 Stage-1 map = 100%,  reduce = 67%, Cumulative CPU 3.77 sec
2018-08-09 20:27:40,261 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 4.42 sec
MapReduce Total cumulative CPU time: 4 seconds 420 msec
Ended Job = job_1533789743141_0016
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 1   Cumulative CPU: 4.42 sec   HDFS Read: 7956 HDFS Write: 102 SUCCESS
Total MapReduce CPU Time Spent: 4 seconds 420 msec
OK
min_age
49
Time taken: 79.135 seconds, Fetched: 1 row(s)
hive (yinzhengjie)>
基本查询- 常用函数之求年龄的最小值(hive (yinzhengjie)> select min(id) min_age from teacher;)
hive (yinzhengjie)> select sum(id) sum_age from teacher;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180809202800_14580ea4-3e65-461e-a1c6-6607e960c3d7
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Starting Job = job_1533789743141_0017, Tracking URL = http://s101:8088/proxy/application_1533789743141_0017/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0017
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2018-08-09 20:28:16,698 Stage-1 map = 0%,  reduce = 0%
2018-08-09 20:28:29,168 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.27 sec
2018-08-09 20:28:42,627 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 4.58 sec
MapReduce Total cumulative CPU time: 4 seconds 580 msec
Ended Job = job_1533789743141_0017
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 1   Cumulative CPU: 4.58 sec   HDFS Read: 7948 HDFS Write: 103 SUCCESS
Total MapReduce CPU Time Spent: 4 seconds 580 msec
OK
sum_age
534
Time taken: 43.081 seconds, Fetched: 1 row(s)
hive (yinzhengjie)>
基本查询- 常用函数之求年龄的总和(hive (yinzhengjie)> select sum(id) sum_age from teacher;)
hive (yinzhengjie)> select avg(id) avg_age from teacher;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180809202900_618a9c9f-535a-45ac-94de-16723f47d9b9
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Starting Job = job_1533789743141_0018, Tracking URL = http://s101:8088/proxy/application_1533789743141_0018/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0018
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2018-08-09 20:29:18,939 Stage-1 map = 0%,  reduce = 0%
2018-08-09 20:29:38,527 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 3.19 sec
2018-08-09 20:29:58,143 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 5.25 sec
MapReduce Total cumulative CPU time: 5 seconds 250 msec
Ended Job = job_1533789743141_0018
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 1   Cumulative CPU: 5.25 sec   HDFS Read: 8551 HDFS Write: 118 SUCCESS
Total MapReduce CPU Time Spent: 5 seconds 250 msec
OK
avg_age
59.333333333333336
Time taken: 59.897 seconds, Fetched: 1 row(s)
hive (yinzhengjie)> 
基本查询- 常用函数之求年龄的平均值(hive (yinzhengjie)> select avg(id) avg_age from teacher;)
hive (yinzhengjie)> select id AS age , name  from teacher;
OK
age    name
70    Dennis MacAlistair Ritchie
49    Linus Benedict Torvalds
68    Bjarne Stroustrup
62    Guido van Rossum
63    James Gosling
60    Martin Odersky
62    Rob Pike
50    Rasmus Lerdorf
50    Brendan Eich
Time taken: 0.068 seconds, Fetched: 9 row(s)
hive (yinzhengjie)> select id AS age , name  from teacher limit 3;             #典型的查询会返回多行数据。LIMIT子句用于限制返回的行数。
OK
age    name
70    Dennis MacAlistair Ritchie
49    Linus Benedict Torvalds
68    Bjarne Stroustrup
Time taken: 0.1 seconds, Fetched: 3 row(s)
hive (yinzhengjie)> 
基本查询- Limit语句(hive (yinzhengjie)> select id AS age , name from teacher limit 3;)
hive (yinzhengjie)> select id, name  from teacher where id> 60;                #使用WHERE子句,将不满足条件的行过滤掉。WHERE子句紧随FROM子句。
OK
id    name
70    Dennis MacAlistair Ritchie
68    Bjarne Stroustrup
62    Guido van Rossum
63    James Gosling
62    Rob Pike
Time taken: 0.056 seconds, Fetched: 5 row(s)
hive (yinzhengjie)> 
Where语句(hive (yinzhengjie)> select id, name from teacher where id> 60;)
hive (yinzhengjie)> select * from teacher where id = 60;                    #查询出id等于60的老师
OK
teacher.id    teacher.name
60    Martin Odersky
Time taken: 0.075 seconds, Fetched: 1 row(s)
hive (yinzhengjie)> 
hive (yinzhengjie)> select * from teacher where id between 40 and 60;        #查询id在40到60的老师
OK
teacher.id    teacher.name
49    Linus Benedict Torvalds
60    Martin Odersky
50    Rasmus Lerdorf
50    Brendan Eich
Time taken: 0.05 seconds, Fetched: 4 row(s)
hive (yinzhengjie)> 
hive (yinzhengjie)> select * from teacher where name is null;                #查询name字段为空的所有老师信息,很显然我没有这样的数据
OK
teacher.id    teacher.name
Time taken: 0.104 seconds
hive (yinzhengjie)> 
hive (yinzhengjie)> select * from teacher where id IN(50,60);                #查询id是50和60的老师信息
OK
teacher.id    teacher.name
60    Martin Odersky
50    Rasmus Lerdorf
50    Brendan Eich
Time taken: 0.07 seconds, Fetched: 3 row(s)
hive (yinzhengjie)> 


下面表中描述了谓词操作符,这些操作符同样可以用于JOIN…ON和HAVING语句中。
操作符                                支持的数据类型                                描述
A=B                                    基本数据类型            如果A等于B则返回TRUE,反之返回FALSE
A<=>B                                基本数据类型            如果A和B都为NULL,则返回TRUE,其他的和等号(=)操作符的结果一致,如果任一为NULL则结果为NULL
A<>B, A!=B                            基本数据类型            A或者B为NULL则返回NULL;如果A不等于B,则返回TRUE,反之返回FALSE
A<B                                    基本数据类型            A或者B为NULL,则返回NULL;如果A小于B,则返回TRUE,反之返回FALSE
A<=B                                基本数据类型            A或者B为NULL,则返回NULL;如果A小于等于B,则返回TRUE,反之返回FALSE
A>B                                    基本数据类型            A或者B为NULL,则返回NULL;如果A大于B,则返回TRUE,反之返回FALSE
A>=B                                基本数据类型            A或者B为NULL,则返回NULL;如果A大于等于B,则返回TRUE,反之返回FALSE
A [NOT] BETWEEN B AND C                基本数据类型            如果A,B或者C任一为NULL,则结果为NULL。如果A的值大于等于B而且小于或等于C,则结果为TRUE,反之为FALSE。如果使用NOT关键字则可达到相反的效果。
A IS NULL                            所有数据类型            如果A等于NULL,则返回TRUE,反之返回FALSE
A IS NOT NULL                        所有数据类型            如果A不等于NULL,则返回TRUE,反之返回FALSE
IN(数值1, 数值2)                    所有数据类型            使用 IN运算显示列表中的值
A [NOT] LIKE B                        STRING类型                B是一个SQL下的简单正则表达式,如果A与其匹配的话,则返回TRUE;反之返回FALSE。B的表达式说明如下:‘x%’表示A必须以字母‘x’开头,‘%x’表示A必须以字母’x’结尾,而‘%x%’表示A包含有字母’x’,可以位于开头,结尾或者字符串中间。如果使用NOT关键字则可达到相反的效果。
A RLIKE B, A REGEXP B                STRING类型                B是一个正则表达式,如果A与其匹配,则返回TRUE;反之返回FALSE。匹配使用的是JDK中的正则表达式接口实现的,因为正则也依据其中的规则。例如,正则表达式必须和整个字符串A相匹配,而不是只需与其字符串匹配。
Where语句-比较运算符详解(hive (yinzhengjie)> select * from teacher where id IN(50,60);)
1>.使用LIKE运算选择类似的值
2>.选择条件可以包含字符或数字:
        % :代表零个或多个字符(任意个字符)。
        _ :代表一个字符。
3>.RLIKE子句是Hive中这个功能的一个扩展,其可以通过Java的正则表达式这个更强大的语言来指定匹配条件。




hive (yinzhengjie)> select * from teacher where id LIKE '5%';                #查找以5开头id的老师信息
OK
teacher.id    teacher.name
50    Rasmus Lerdorf
50    Brendan Eich
Time taken: 0.126 seconds, Fetched: 2 row(s)
hive (yinzhengjie)> 
hive (yinzhengjie)> select * from teacher where id LIKE '_2%';                #查找第二个数值为2的id的老师信息
OK
teacher.id    teacher.name
62    Guido van Rossum
62    Rob Pike
Time taken: 0.065 seconds, Fetched: 2 row(s)
hive (yinzhengjie)> 
hive (yinzhengjie)> select * from teacher where name RLIKE '[P]';            #查找name字段中含有“P”字母的老师信息
OK
teacher.id    teacher.name
62    Rob Pike
Time taken: 0.049 seconds, Fetched: 1 row(s)
hive (yinzhengjie)> 
Where语句-Like和RLike(hive (yinzhengjie)> select * from teacher where name RLIKE '[P]';)
hive (yinzhengjie)> select * from teacher where id NOT IN(50,70,49,68,62);
OK
teacher.id    teacher.name
63    James Gosling
60    Martin Odersky
Time taken: 0.076 seconds, Fetched: 2 row(s)
hive (yinzhengjie)> 
Where语句-逻辑运算符(hive (yinzhengjie)> select * from teacher where id > 65 or id <50;)
hive (yinzhengjie)> select * from dept_partition;
OK
dept_partition.deptno    dept_partition.dname    dept_partition.loc    dept_partition.month
10    开发部门    20000    201805
20    运维部门    13000    201805
30    测试部门    8000    201805
40    产品部门    6000    201805
50    销售部门    15000    201805
60    财务部门    17000    201805
70    人事部门    16000    201805
10    开发部门    25000    201805
10    开发部门    10000    201805
20    运维部门    13000    201805
30    测试部门    7000    201805
40    产品部门    9000    201805
50    销售部门    26000    201805
60    财务部门    11000    201805
70    人事部门    16000    201805
20    运维部门    21000    201805
30    测试部门    8000    201805
40    产品部门    9800    201805
50    销售部门    15000    201805
60    财务部门    17000    201805
70    人事部门    8700    201805
Time taken: 0.059 seconds, Fetched: 21 row(s)
hive (yinzhengjie)> 
hive (yinzhengjie)> select t.deptno, avg(t.loc) avg_sal from dept_partition t group by t.deptno;            #计算dept_partition表每个部门的平均工资
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180809212224_fcbdaa54-b167-4a43-8a08-c0a984c25a0d
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks not specified. Estimated from input data size: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Starting Job = job_1533789743141_0021, Tracking URL = http://s101:8088/proxy/application_1533789743141_0021/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0021
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2018-08-09 21:22:51,029 Stage-1 map = 0%,  reduce = 0%
2018-08-09 21:23:15,924 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.62 sec
2018-08-09 21:23:31,362 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 5.14 sec
MapReduce Total cumulative CPU time: 5 seconds 140 msec
Ended Job = job_1533789743141_0021
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 1   Cumulative CPU: 5.14 sec   HDFS Read: 9719 HDFS Write: 312 SUCCESS
Total MapReduce CPU Time Spent: 5 seconds 140 msec
OK
t.deptno    avg_sal
10    18333.333333333332
20    15666.666666666666
30    7666.666666666667
40    8266.666666666666
50    18666.666666666668
60    15000.0
70    13566.666666666666
Time taken: 68.573 seconds, Fetched: 7 row(s)
hive (yinzhengjie)>
分组-Group By语句案例一(hive (yinzhengjie)> select t.deptno, avg(t.loc) avg_sal from dept_partition t group by t.deptno;)
hive (yinzhengjie)> select * from dept_partition;
OK
dept_partition.deptno    dept_partition.dname    dept_partition.loc    dept_partition.month
10    开发部门    20000    201805
20    运维部门    13000    201805
30    测试部门    8000    201805
40    产品部门    6000    201805
50    销售部门    15000    201805
60    财务部门    17000    201805
70    人事部门    16000    201805
10    开发部门    25000    201805
10    开发部门    10000    201805
20    运维部门    13000    201805
30    测试部门    7000    201805
40    产品部门    9000    201805
50    销售部门    26000    201805
60    财务部门    11000    201805
70    人事部门    16000    201805
20    运维部门    21000    201805
30    测试部门    8000    201805
40    产品部门    9800    201805
50    销售部门    15000    201805
60    财务部门    17000    201805
70    人事部门    8700    201805
Time taken: 0.072 seconds, Fetched: 21 row(s)
hive (yinzhengjie)> 
hive (yinzhengjie)> select t.deptno, t.dname,max(t.loc) max_sal from dept_partition t group by t.deptno,t.dname;        #计算dept_partition每个部门中每个岗位的最高薪水
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180809213154_e1ea82c8-897d-40b5-b167-5fe42d0e6476
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks not specified. Estimated from input data size: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Starting Job = job_1533789743141_0023, Tracking URL = http://s101:8088/proxy/application_1533789743141_0023/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0023
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2018-08-09 21:32:11,358 Stage-1 map = 0%,  reduce = 0%
2018-08-09 21:32:21,651 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.85 sec
2018-08-09 21:32:29,958 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 3.61 sec
MapReduce Total cumulative CPU time: 3 seconds 610 msec
Ended Job = job_1533789743141_0023
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 1   Cumulative CPU: 3.61 sec   HDFS Read: 9537 HDFS Write: 406 SUCCESS
Total MapReduce CPU Time Spent: 3 seconds 610 msec
OK
t.deptno    t.dname    max_sal
10    开发部门    25000
20    运维部门    21000
30    测试部门    8000
40    产品部门    9800
50    销售部门    26000
60    财务部门    17000
70    人事部门    8700
Time taken: 37.781 seconds, Fetched: 7 row(s)
hive (yinzhengjie)> 
分组-Group By语句案例二(hive (yinzhengjie)> select t.deptno, t.dname,max(t.loc) max_sal from dept_partition t group by t.deptno,t.dname;)
hive (yinzhengjie)> select deptno,dname,avg(loc) AS avg_sal  from dept_partition  group by dname,deptno;                            #求每个部门的平均工资
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180809213945_f7a1a9c2-8c19-4096-9c1a-37faa29fee44
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks not specified. Estimated from input data size: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Starting Job = job_1533789743141_0024, Tracking URL = http://s101:8088/proxy/application_1533789743141_0024/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0024
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2018-08-09 21:40:17,366 Stage-1 map = 0%,  reduce = 0%
2018-08-09 21:40:33,044 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.2 sec
2018-08-09 21:40:46,435 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 4.69 sec
MapReduce Total cumulative CPU time: 4 seconds 690 msec
Ended Job = job_1533789743141_0024
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 1   Cumulative CPU: 4.69 sec   HDFS Read: 10452 HDFS Write: 487 SUCCESS
Total MapReduce CPU Time Spent: 4 seconds 690 msec
OK
deptno    dname    avg_sal
10    开发部门    18333.333333333332
20    运维部门    15666.666666666666
30    测试部门    7666.666666666667
40    产品部门    8266.666666666666
50    销售部门    18666.666666666668
60    财务部门    15000.0
70    人事部门    13566.666666666666
Time taken: 63.433 seconds, Fetched: 7 row(s)
hive (yinzhengjie)> 
hive (yinzhengjie)> select deptno,dname,avg(loc) AS avg_sal from dept_partition group by dname, deptno having avg_sal > 10000;            #求每个部门的平均薪水大于10000的部门
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180809214521_d980d9db-3473-4fd4-a062-ec9de0cafca2
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks not specified. Estimated from input data size: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Starting Job = job_1533789743141_0026, Tracking URL = http://s101:8088/proxy/application_1533789743141_0026/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0026
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2018-08-09 21:45:37,001 Stage-1 map = 0%,  reduce = 0%
2018-08-09 21:45:50,841 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.45 sec
2018-08-09 21:46:03,332 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 4.45 sec
MapReduce Total cumulative CPU time: 4 seconds 450 msec
Ended Job = job_1533789743141_0026
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 1   Cumulative CPU: 4.45 sec   HDFS Read: 10711 HDFS Write: 371 SUCCESS
Total MapReduce CPU Time Spent: 4 seconds 450 msec
OK
deptno    dname    avg_sal
70    人事部门    13566.666666666666
10    开发部门    18333.333333333332
60    财务部门    15000.0
20    运维部门    15666.666666666666
50    销售部门    18666.666666666668
Time taken: 43.701 seconds, Fetched: 5 row(s)
hive (yinzhengjie)> 
分组-Having语句(hive (yinzhengjie)> select deptno,dname,avg(loc) AS avg_sal from dept_partition group by dname, deptno having avg_sal > 10000;)
Join语句-等值Join(hive (yinzhengjie)>  select e.empno, e.ename, d.deptno, d.dname from emp e join dept d on e.deptno = d.deptno;)
    Hive支持通常的SQL JOIN语句,但是只支持等值连接,不支持非等值连接。
    
测试数据如下:
[yinzhengjie@s101 download]$ cat /home/yinzhengjie/download/dept.txt 
10    ACCOUNTING    1700
20    RESEARCH    1800
30    SALES    1900
40    OPERATIONS    1700
[yinzhengjie@s101 download]$ 
[yinzhengjie@s101 download]$ cat /home/yinzhengjie/download/emp.txt 
7369    SMITH    CLERK    7902    1980-12-17    800.00        20
7499    ALLEN    SALESMAN    7698    1981-2-20    1600.00    300.00    30
7521    WARD    SALESMAN    7698    1981-2-22    1250.00    500.00    30
7566    JONES    MANAGER    7839    1981-4-2    2975.00        20
7654    MARTIN    SALESMAN    7698    1981-9-28    1250.00    1400.00    30
7698    BLAKE    MANAGER    7839    1981-5-1    2850.00        30
7782    CLARK    MANAGER    7839    1981-6-9    2450.00        10
7788    SCOTT    ANALYST    7566    1987-4-19    3000.00        20
7839    KING    PRESIDENT        1981-11-17    5000.00        10
7844    TURNER    SALESMAN    7698    1981-9-8    1500.00    0.00    30
7876    ADAMS    CLERK    7788    1987-5-23    1100.00        20
7900    JAMES    CLERK    7698    1981-12-3    950.00        30
7902    FORD    ANALYST    7566    1981-12-3    3000.00        20
7934    MILLER    CLERK    7782    1982-1-23    1300.00        10
[yinzhengjie@s101 download]$ 


hive查询操作如下:                
hive (yinzhengjie)> create  table if not exists yinzhengjie.dept(
                  >     deptno int,
                  >     dname string,
                  >     loc int
                  > )
                  > row format delimited fields terminated by '\t';                            #创建部门表dept
OK
Time taken: 0.204 seconds
hive (yinzhengjie)> create  table if not exists yinzhengjie.emp(
                  >     empno int,
                  >     ename string,
                  >     job string,
                  >     mgr int,
                  >     hiredate string,
                  >     sal double,
                  >     comm double,
                  >     deptno int
                  >)
                  > row format delimited fields terminated by '\t';                            #创建员工表emp
OK
Time taken: 0.088 seconds
hive (yinzhengjie)> 
hive (yinzhengjie)> load data local inpath '/home/yinzhengjie/download/dept.txt' into table yinzhengjie.dept;            #向dept中导入数据
Loading data to table yinzhengjie.dept
OK
Time taken: 0.222 seconds
hive (yinzhengjie)> load data local inpath '/home/yinzhengjie/download/emp.txt' into table yinzhengjie.emp;                #向emp中导入数据
Loading data to table yinzhengjie.emp
OK
Time taken: 0.175 seconds
hive (yinzhengjie)> 
hive (yinzhengjie)>  select e.empno, e.ename, d.deptno, d.dname from emp e join dept d on e.deptno = d.deptno;            #根据员工表和部门表中的部门编号相等,查询员工编号、员工名称和部门编号;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180809233409_a9437af4-b312-4dfb-86af-f29bcf679577
Total jobs = 1
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/soft/apache-hive-2.1.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hbase-1.2.6/lib/phoenix-4.10.0-HBase-1.2-client.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
2018-08-09 23:34:25    Starting to launch local task to process map join;    maximum memory = 477626368
2018-08-09 23:34:34    Dump the side-table for tag: 1 with group count: 4 into file: file:/home/yinzhengjie/yinzhengjie/46c2c137-93f5-4f30-9855-6b0d3d62c227/hive_2018-08-09_23-34-09_040_8075868526571286750-1/-local-10004/HashTable-Stage-3/MapJoin-mapfile11--.hashtable
2018-08-09 23:34:34    Uploaded 1 File to: file:/home/yinzhengjie/yinzhengjie/46c2c137-93f5-4f30-9855-6b0d3d62c227/hive_2018-08-09_23-34-09_040_8075868526571286750-1/-local-10004/HashTable-Stage-3/MapJoin-mapfile11--.hashtable (430 bytes)
2018-08-09 23:34:34    End of local task; Time Taken: 9.163 sec.
Execution completed successfully
MapredLocal task succeeded
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1533789743141_0028, Tracking URL = http://s101:8088/proxy/application_1533789743141_0028/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0028
Hadoop job information for Stage-3: number of mappers: 1; number of reducers: 0
2018-08-09 23:35:21,748 Stage-3 map = 0%,  reduce = 0%
2018-08-09 23:35:45,815 Stage-3 map = 100%,  reduce = 0%, Cumulative CPU 2.71 sec
MapReduce Total cumulative CPU time: 2 seconds 710 msec
Ended Job = job_1533789743141_0028
MapReduce Jobs Launched: 
Stage-Stage-3: Map: 1   Cumulative CPU: 2.71 sec   HDFS Read: 8390 HDFS Write: 1999 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 710 msec
OK
e.empno    e.ename    d.deptno    d.dname
7369    SMITH    20    RESEARCH
7369    SMITH    20    RESEARCH
7499    ALLEN    30    SALES
7499    ALLEN    30    SALES
7521    WARD    30    SALES
7521    WARD    30    SALES
7566    JONES    20    RESEARCH
7566    JONES    20    RESEARCH
7654    MARTIN    30    SALES
7654    MARTIN    30    SALES
7698    BLAKE    30    SALES
7698    BLAKE    30    SALES
7782    CLARK    10    ACCOUNTING
7782    CLARK    10    ACCOUNTING
7788    SCOTT    20    RESEARCH
7788    SCOTT    20    RESEARCH
7839    KING    10    ACCOUNTING
7839    KING    10    ACCOUNTING
7844    TURNER    30    SALES
7844    TURNER    30    SALES
7876    ADAMS    20    RESEARCH
7876    ADAMS    20    RESEARCH
7900    JAMES    30    SALES
7900    JAMES    30    SALES
7902    FORD    20    RESEARCH
7902    FORD    20    RESEARCH
7934    MILLER    10    ACCOUNTING
7934    MILLER    10    ACCOUNTING
7369    SMITH    20    RESEARCH
7369    SMITH    20    RESEARCH
7499    ALLEN    30    SALES
7499    ALLEN    30    SALES
7521    WARD    30    SALES
7521    WARD    30    SALES
7566    JONES    20    RESEARCH
7566    JONES    20    RESEARCH
7654    MARTIN    30    SALES
7654    MARTIN    30    SALES
7698    BLAKE    30    SALES
7698    BLAKE    30    SALES
7782    CLARK    10    ACCOUNTING
7782    CLARK    10    ACCOUNTING
7788    SCOTT    20    RESEARCH
7788    SCOTT    20    RESEARCH
7839    KING    10    ACCOUNTING
7839    KING    10    ACCOUNTING
7844    TURNER    30    SALES
7844    TURNER    30    SALES
7876    ADAMS    20    RESEARCH
7876    ADAMS    20    RESEARCH
7900    JAMES    30    SALES
7900    JAMES    30    SALES
7902    FORD    20    RESEARCH
7902    FORD    20    RESEARCH
7934    MILLER    10    ACCOUNTING
7934    MILLER    10    ACCOUNTING
Time taken: 98.923 seconds, Fetched: 56 row(s)
hive (yinzhengjie)> 
Join语句-等值Join(hive (yinzhengjie)> select e.empno, e.ename, d.deptno, d.dname from emp e join dept d on e.deptno = d.deptno;)
Join语句-表的别名(hive (yinzhengjie)> select e.empno, e.ename, d.deptno from emp e join dept d on e.deptno = d.deptno;)
    表的别名有以下两个好处:
        1>.使用别名可以简化查询。
        2>.使用表名前缀可以提高执行效率。




hive (yinzhengjie)> select e.empno, e.ename, d.deptno from emp e join dept d on e.deptno = d.deptno;            #合并员工表和部门表
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180809233120_cdd0ba5f-33b4-41f6-8f49-4a51e3c104ec
Total jobs = 1
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/soft/apache-hive-2.1.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hbase-1.2.6/lib/phoenix-4.10.0-HBase-1.2-client.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
2018-08-09 23:31:39    Starting to launch local task to process map join;    maximum memory = 477626368
2018-08-09 23:31:55    Dump the side-table for tag: 1 with group count: 4 into file: file:/home/yinzhengjie/yinzhengjie/46c2c137-93f5-4f30-9855-6b0d3d62c227/hive_2018-08-09_23-31-20_931_5011927912909131499-1/-local-10004/HashTable-Stage-3/MapJoin-mapfile01--.hashtable
2018-08-09 23:31:55    Uploaded 1 File to: file:/home/yinzhengjie/yinzhengjie/46c2c137-93f5-4f30-9855-6b0d3d62c227/hive_2018-08-09_23-31-20_931_5011927912909131499-1/-local-10004/HashTable-Stage-3/MapJoin-mapfile01--.hashtable (348 bytes)
2018-08-09 23:31:55    End of local task; Time Taken: 16.147 sec.
Execution completed successfully
MapredLocal task succeeded
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1533789743141_0027, Tracking URL = http://s101:8088/proxy/application_1533789743141_0027/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0027
Hadoop job information for Stage-3: number of mappers: 1; number of reducers: 0
2018-08-09 23:32:55,103 Stage-3 map = 0%,  reduce = 0%
2018-08-09 23:33:11,944 Stage-3 map = 100%,  reduce = 0%, Cumulative CPU 1.82 sec
MapReduce Total cumulative CPU time: 1 seconds 820 msec
Ended Job = job_1533789743141_0027
MapReduce Jobs Launched: 
Stage-Stage-3: Map: 1   Cumulative CPU: 1.82 sec   HDFS Read: 8221 HDFS Write: 1543 SUCCESS
Total MapReduce CPU Time Spent: 1 seconds 820 msec
OK
e.empno    e.ename    d.deptno
7369    SMITH    20
7369    SMITH    20
7499    ALLEN    30
7499    ALLEN    30
7521    WARD    30
7521    WARD    30
7566    JONES    20
7566    JONES    20
7654    MARTIN    30
7654    MARTIN    30
7698    BLAKE    30
7698    BLAKE    30
7782    CLARK    10
7782    CLARK    10
7788    SCOTT    20
7788    SCOTT    20
7839    KING    10
7839    KING    10
7844    TURNER    30
7844    TURNER    30
7876    ADAMS    20
7876    ADAMS    20
7900    JAMES    30
7900    JAMES    30
7902    FORD    20
7902    FORD    20
7934    MILLER    10
7934    MILLER    10
7369    SMITH    20
7369    SMITH    20
7499    ALLEN    30
7499    ALLEN    30
7521    WARD    30
7521    WARD    30
7566    JONES    20
7566    JONES    20
7654    MARTIN    30
7654    MARTIN    30
7698    BLAKE    30
7698    BLAKE    30
7782    CLARK    10
7782    CLARK    10
7788    SCOTT    20
7788    SCOTT    20
7839    KING    10
7839    KING    10
7844    TURNER    30
7844    TURNER    30
7876    ADAMS    20
7876    ADAMS    20
7900    JAMES    30
7900    JAMES    30
7902    FORD    20
7902    FORD    20
7934    MILLER    10
7934    MILLER    10
Time taken: 113.095 seconds, Fetched: 56 row(s)
hive (yinzhengjie)>
Join语句-表的别名(hive (yinzhengjie)> select e.empno, e.ename, d.deptno from emp e join dept d on e.deptno = d.deptno;)
hive (yinzhengjie)> select e.empno, e.ename, d.deptno from emp e join dept d on e.deptno = d.deptno;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180809234054_a83fd2f0-136f-4769-880a-0a928ecb86f0
Total jobs = 1
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/soft/apache-hive-2.1.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hbase-1.2.6/lib/phoenix-4.10.0-HBase-1.2-client.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
2018-08-09 23:41:10    Starting to launch local task to process map join;    maximum memory = 477626368
2018-08-09 23:41:15    Dump the side-table for tag: 1 with group count: 4 into file: file:/home/yinzhengjie/yinzhengjie/46c2c137-93f5-4f30-9855-6b0d3d62c227/hive_2018-08-09_23-40-54_618_7309603760212569588-1/-local-10004/HashTable-Stage-3/MapJoin-mapfile21--.hashtable
2018-08-09 23:41:16    Uploaded 1 File to: file:/home/yinzhengjie/yinzhengjie/46c2c137-93f5-4f30-9855-6b0d3d62c227/hive_2018-08-09_23-40-54_618_7309603760212569588-1/-local-10004/HashTable-Stage-3/MapJoin-mapfile21--.hashtable (348 bytes)
2018-08-09 23:41:16    End of local task; Time Taken: 5.741 sec.
Execution completed successfully
MapredLocal task succeeded
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1533789743141_0029, Tracking URL = http://s101:8088/proxy/application_1533789743141_0029/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0029
Hadoop job information for Stage-3: number of mappers: 1; number of reducers: 0
2018-08-09 23:41:32,299 Stage-3 map = 0%,  reduce = 0%
2018-08-09 23:41:46,692 Stage-3 map = 100%,  reduce = 0%, Cumulative CPU 2.69 sec
MapReduce Total cumulative CPU time: 2 seconds 690 msec
Ended Job = job_1533789743141_0029
MapReduce Jobs Launched: 
Stage-Stage-3: Map: 1   Cumulative CPU: 2.69 sec   HDFS Read: 8208 HDFS Write: 1543 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 690 msec
OK
e.empno    e.ename    d.deptno
7369    SMITH    20
7369    SMITH    20
7499    ALLEN    30
7499    ALLEN    30
7521    WARD    30
7521    WARD    30
7566    JONES    20
7566    JONES    20
7654    MARTIN    30
7654    MARTIN    30
7698    BLAKE    30
7698    BLAKE    30
7782    CLARK    10
7782    CLARK    10
7788    SCOTT    20
7788    SCOTT    20
7839    KING    10
7839    KING    10
7844    TURNER    30
7844    TURNER    30
7876    ADAMS    20
7876    ADAMS    20
7900    JAMES    30
7900    JAMES    30
7902    FORD    20
7902    FORD    20
7934    MILLER    10
7934    MILLER    10
7369    SMITH    20
7369    SMITH    20
7499    ALLEN    30
7499    ALLEN    30
7521    WARD    30
7521    WARD    30
7566    JONES    20
7566    JONES    20
7654    MARTIN    30
7654    MARTIN    30
7698    BLAKE    30
7698    BLAKE    30
7782    CLARK    10
7782    CLARK    10
7788    SCOTT    20
7788    SCOTT    20
7839    KING    10
7839    KING    10
7844    TURNER    30
7844    TURNER    30
7876    ADAMS    20
7876    ADAMS    20
7900    JAMES    30
7900    JAMES    30
7902    FORD    20
7902    FORD    20
7934    MILLER    10
7934    MILLER    10
Time taken: 53.142 seconds, Fetched: 56 row(s)
hive (yinzhengjie)>
Join语句-内连接(hive (yinzhengjie)> select e.empno, e.ename, d.deptno from emp e join dept d on e.deptno = d.deptno;)
hive (yinzhengjie)> select e.empno, e.ename, d.deptno from emp e left join dept d on e.deptno = d.deptno;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180809234222_5966f5f0-b54a-4644-ae82-fd47e8655582
Total jobs = 1
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/soft/apache-hive-2.1.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hbase-1.2.6/lib/phoenix-4.10.0-HBase-1.2-client.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
2018-08-09 23:42:39    Starting to launch local task to process map join;    maximum memory = 477626368
2018-08-09 23:42:43    Dump the side-table for tag: 1 with group count: 4 into file: file:/home/yinzhengjie/yinzhengjie/46c2c137-93f5-4f30-9855-6b0d3d62c227/hive_2018-08-09_23-42-22_712_6649379300342030940-1/-local-10004/HashTable-Stage-3/MapJoin-mapfile31--.hashtable
2018-08-09 23:42:44    Uploaded 1 File to: file:/home/yinzhengjie/yinzhengjie/46c2c137-93f5-4f30-9855-6b0d3d62c227/hive_2018-08-09_23-42-22_712_6649379300342030940-1/-local-10004/HashTable-Stage-3/MapJoin-mapfile31--.hashtable (348 bytes)
2018-08-09 23:42:44    End of local task; Time Taken: 4.518 sec.
Execution completed successfully
MapredLocal task succeeded
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1533789743141_0030, Tracking URL = http://s101:8088/proxy/application_1533789743141_0030/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0030
Hadoop job information for Stage-3: number of mappers: 1; number of reducers: 0
2018-08-09 23:43:07,580 Stage-3 map = 0%,  reduce = 0%
2018-08-09 23:43:18,075 Stage-3 map = 100%,  reduce = 0%, Cumulative CPU 2.03 sec
MapReduce Total cumulative CPU time: 2 seconds 30 msec
Ended Job = job_1533789743141_0030
MapReduce Jobs Launched: 
Stage-Stage-3: Map: 1   Cumulative CPU: 2.03 sec   HDFS Read: 7874 HDFS Write: 1543 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 30 msec
OK
e.empno    e.ename    d.deptno
7369    SMITH    20
7369    SMITH    20
7499    ALLEN    30
7499    ALLEN    30
7521    WARD    30
7521    WARD    30
7566    JONES    20
7566    JONES    20
7654    MARTIN    30
7654    MARTIN    30
7698    BLAKE    30
7698    BLAKE    30
7782    CLARK    10
7782    CLARK    10
7788    SCOTT    20
7788    SCOTT    20
7839    KING    10
7839    KING    10
7844    TURNER    30
7844    TURNER    30
7876    ADAMS    20
7876    ADAMS    20
7900    JAMES    30
7900    JAMES    30
7902    FORD    20
7902    FORD    20
7934    MILLER    10
7934    MILLER    10
7369    SMITH    20
7369    SMITH    20
7499    ALLEN    30
7499    ALLEN    30
7521    WARD    30
7521    WARD    30
7566    JONES    20
7566    JONES    20
7654    MARTIN    30
7654    MARTIN    30
7698    BLAKE    30
7698    BLAKE    30
7782    CLARK    10
7782    CLARK    10
7788    SCOTT    20
7788    SCOTT    20
7839    KING    10
7839    KING    10
7844    TURNER    30
7844    TURNER    30
7876    ADAMS    20
7876    ADAMS    20
7900    JAMES    30
7900    JAMES    30
7902    FORD    20
7902    FORD    20
7934    MILLER    10
7934    MILLER    10
Time taken: 57.477 seconds, Fetched: 56 row(s)
hive (yinzhengjie)>  
Join语句-左外连接(hive (yinzhengjie)> select e.empno, e.ename, d.deptno from emp e left join dept d on e.deptno = d.deptno;)
hive (yinzhengjie)>  select e.empno, e.ename, d.deptno from emp e right join dept d on e.deptno = d.deptno;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180809234332_c83104d3-5265-4e3d-a2bf-342b5c397b9d
Total jobs = 1
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/soft/apache-hive-2.1.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hbase-1.2.6/lib/phoenix-4.10.0-HBase-1.2-client.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
2018-08-09 23:43:50    Starting to launch local task to process map join;    maximum memory = 477626368
2018-08-09 23:43:54    Dump the side-table for tag: 0 with group count: 3 into file: file:/home/yinzhengjie/yinzhengjie/46c2c137-93f5-4f30-9855-6b0d3d62c227/hive_2018-08-09_23-43-32_208_373121853797344697-1/-local-10004/HashTable-Stage-3/MapJoin-mapfile40--.hashtable
2018-08-09 23:43:54    Uploaded 1 File to: file:/home/yinzhengjie/yinzhengjie/46c2c137-93f5-4f30-9855-6b0d3d62c227/hive_2018-08-09_23-43-32_208_373121853797344697-1/-local-10004/HashTable-Stage-3/MapJoin-mapfile40--.hashtable (697 bytes)
2018-08-09 23:43:54    End of local task; Time Taken: 4.69 sec.
Execution completed successfully
MapredLocal task succeeded
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1533789743141_0031, Tracking URL = http://s101:8088/proxy/application_1533789743141_0031/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0031
Hadoop job information for Stage-3: number of mappers: 1; number of reducers: 0
2018-08-09 23:44:21,028 Stage-3 map = 0%,  reduce = 0%
2018-08-09 23:44:54,359 Stage-3 map = 100%,  reduce = 0%, Cumulative CPU 2.38 sec
MapReduce Total cumulative CPU time: 2 seconds 380 msec
Ended Job = job_1533789743141_0031
MapReduce Jobs Launched: 
Stage-Stage-3: Map: 1   Cumulative CPU: 2.38 sec   HDFS Read: 6395 HDFS Write: 1585 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 380 msec
OK
e.empno    e.ename    d.deptno
7782    CLARK    10
7839    KING    10
7934    MILLER    10
7782    CLARK    10
7839    KING    10
7934    MILLER    10
7369    SMITH    20
7566    JONES    20
7788    SCOTT    20
7876    ADAMS    20
7902    FORD    20
7369    SMITH    20
7566    JONES    20
7788    SCOTT    20
7876    ADAMS    20
7902    FORD    20
7499    ALLEN    30
7521    WARD    30
7654    MARTIN    30
7698    BLAKE    30
7844    TURNER    30
7900    JAMES    30
7499    ALLEN    30
7521    WARD    30
7654    MARTIN    30
7698    BLAKE    30
7844    TURNER    30
7900    JAMES    30
NULL    NULL    40
7782    CLARK    10
7839    KING    10
7934    MILLER    10
7782    CLARK    10
7839    KING    10
7934    MILLER    10
7369    SMITH    20
7566    JONES    20
7788    SCOTT    20
7876    ADAMS    20
7902    FORD    20
7369    SMITH    20
7566    JONES    20
7788    SCOTT    20
7876    ADAMS    20
7902    FORD    20
7499    ALLEN    30
7521    WARD    30
7654    MARTIN    30
7698    BLAKE    30
7844    TURNER    30
7900    JAMES    30
7499    ALLEN    30
7521    WARD    30
7654    MARTIN    30
7698    BLAKE    30
7844    TURNER    30
7900    JAMES    30
NULL    NULL    40
Time taken: 87.954 seconds, Fetched: 58 row(s)
hive (yinzhengjie)> 
Join语句-右外连接(hive (yinzhengjie)> select e.empno, e.ename, d.deptno from emp e right join dept d on e.deptno = d.deptno;)
Join语句-满外连接(hive (yinzhengjie)> select e.empno, e.ename, d.deptno from emp e full join dept d on e.deptno = d.deptno;)
    满外连接:将会返回所有表中符合WHERE语句条件的所有记录。如果任一表的指定字段没有符合条件的值的话,那么就使用NULL值替代。

hive (yinzhengjie)> select e.empno, e.ename, d.deptno from emp e full join dept d on e.deptno = d.deptno;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180809235025_e7e97788-2d65-45e0-b567-004f2d7057e0
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks not specified. Estimated from input data size: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Starting Job = job_1533789743141_0035, Tracking URL = http://s101:8088/proxy/application_1533789743141_0035/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0035
Hadoop job information for Stage-1: number of mappers: 2; number of reducers: 1
2018-08-09 23:50:45,807 Stage-1 map = 0%,  reduce = 0%
2018-08-09 23:51:08,516 Stage-1 map = 50%,  reduce = 0%, Cumulative CPU 2.58 sec
2018-08-09 23:51:14,735 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 4.88 sec
2018-08-09 23:51:27,238 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 7.56 sec
MapReduce Total cumulative CPU time: 7 seconds 560 msec
Ended Job = job_1533789743141_0035
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 2  Reduce: 1   Cumulative CPU: 7.56 sec   HDFS Read: 17097 HDFS Write: 1585 SUCCESS
Total MapReduce CPU Time Spent: 7 seconds 560 msec
OK
e.empno    e.ename    d.deptno
7934    MILLER    10
7934    MILLER    10
7839    KING    10
7839    KING    10
7782    CLARK    10
7782    CLARK    10
7934    MILLER    10
7934    MILLER    10
7839    KING    10
7839    KING    10
7782    CLARK    10
7782    CLARK    10
7788    SCOTT    20
7788    SCOTT    20
7566    JONES    20
7566    JONES    20
7566    JONES    20
7566    JONES    20
7369    SMITH    20
7369    SMITH    20
7902    FORD    20
7902    FORD    20
7876    ADAMS    20
7876    ADAMS    20
7788    SCOTT    20
7788    SCOTT    20
7369    SMITH    20
7369    SMITH    20
7902    FORD    20
7902    FORD    20
7876    ADAMS    20
7876    ADAMS    20
7900    JAMES    30
7900    JAMES    30
7844    TURNER    30
7844    TURNER    30
7844    TURNER    30
7844    TURNER    30
7499    ALLEN    30
7499    ALLEN    30
7698    BLAKE    30
7698    BLAKE    30
7654    MARTIN    30
7654    MARTIN    30
7900    JAMES    30
7900    JAMES    30
7521    WARD    30
7521    WARD    30
7499    ALLEN    30
7499    ALLEN    30
7654    MARTIN    30
7654    MARTIN    30
7521    WARD    30
7521    WARD    30
7698    BLAKE    30
7698    BLAKE    30
NULL    NULL    40
NULL    NULL    40
Time taken: 63.838 seconds, Fetched: 58 row(s)
hive (yinzhengjie)> 
Join语句-满外连接(hive (yinzhengjie)> select e.empno, e.ename, d.deptno from emp e full join dept d on e.deptno = d.deptno;)
Join语句-多表连接查询(hive (yinzhengjie)> SELECT e.ename, d.deptno, l. loc_name FROM   emp e JOIN   dept d ON     d.deptno = e.deptno JOIN   location l ON     d.loc = l.loc;)
    
测试文件内容:
[yinzhengjie@s101 ~]$ cat /home/yinzhengjie/download/location.txt 
1700    Beijing
1800    London
1900    Tokyo
[yinzhengjie@s101 ~]$ 


    大多数情况下,Hive会对每对JOIN连接对象启动一个MapReduce任务。以下案例中会首先启动一个MapReduce job对表e和表d进行连接操作,
然后会再启动一个MapReduce job将第一个MapReduce job的输出和表l;进行连接操作。
    温馨提示:为什么不是表d和表l先进行连接操作呢?这是因为Hive总是按照从左到右的顺序执行的。
    
    
hive (yinzhengjie)> create table if not exists yinzhengjie.location(
                  >     loc int,
                  >     loc_name string
                  > )
                  > row format delimited fields terminated by '\t';                        #创建location表
OK
Time taken: 0.614 seconds
hive (yinzhengjie)> load data local inpath '/home/yinzhengjie/download/location.txt' into table yinzhengjie.location;        #向表中导入数据
Loading data to table yinzhengjie.location
OK
Time taken: 0.478 seconds
hive (yinzhengjie)>
hive (yinzhengjie)> SELECT e.ename, d.deptno, l. loc_name
                  > FROM   emp e
                  > JOIN   dept d
                  > ON     d.deptno = e.deptno 
                  > JOIN   location l
                  > ON     d.loc = l.loc;                    #多表连接查询
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180809235602_7fbd82df-9541-4b76-b5c4-9482d4aa2ccc
Total jobs = 1
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/soft/apache-hive-2.1.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hbase-1.2.6/lib/phoenix-4.10.0-HBase-1.2-client.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
2018-08-09 23:56:12    Starting to launch local task to process map join;    maximum memory = 477626368
2018-08-09 23:56:16    Dump the side-table for tag: 1 with group count: 3 into file: file:/home/yinzhengjie/yinzhengjie/85f0ef7d-ce74-41a8-942e-d1798288e72b/hive_2018-08-09_23-56-02_428_1537442849954313200-1/-local-10005/HashTable-Stage-5/MapJoin-mapfile01--.hashtable
2018-08-09 23:56:16    Uploaded 1 File to: file:/home/yinzhengjie/yinzhengjie/85f0ef7d-ce74-41a8-942e-d1798288e72b/hive_2018-08-09_23-56-02_428_1537442849954313200-1/-local-10005/HashTable-Stage-5/MapJoin-mapfile01--.hashtable (344 bytes)
2018-08-09 23:56:16    Dump the side-table for tag: 1 with group count: 4 into file: file:/home/yinzhengjie/yinzhengjie/85f0ef7d-ce74-41a8-942e-d1798288e72b/hive_2018-08-09_23-56-02_428_1537442849954313200-1/-local-10005/HashTable-Stage-5/MapJoin-mapfile11--.hashtable
2018-08-09 23:56:16    Uploaded 1 File to: file:/home/yinzhengjie/yinzhengjie/85f0ef7d-ce74-41a8-942e-d1798288e72b/hive_2018-08-09_23-56-02_428_1537442849954313200-1/-local-10005/HashTable-Stage-5/MapJoin-mapfile11--.hashtable (380 bytes)
2018-08-09 23:56:16    End of local task; Time Taken: 3.928 sec.
Execution completed successfully
MapredLocal task succeeded
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1533789743141_0036, Tracking URL = http://s101:8088/proxy/application_1533789743141_0036/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0036
Hadoop job information for Stage-5: number of mappers: 1; number of reducers: 0
2018-08-09 23:56:37,193 Stage-5 map = 0%,  reduce = 0%
2018-08-09 23:56:54,925 Stage-5 map = 100%,  reduce = 0%, Cumulative CPU 2.64 sec
MapReduce Total cumulative CPU time: 2 seconds 640 msec
Ended Job = job_1533789743141_0036
MapReduce Jobs Launched: 
Stage-Stage-5: Map: 1   Cumulative CPU: 2.64 sec   HDFS Read: 9513 HDFS Write: 865 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 640 msec
OK
e.ename    d.deptno    l.loc_name
SMITH    20    London
ALLEN    30    Tokyo
WARD    30    Tokyo
JONES    20    London
MARTIN    30    Tokyo
BLAKE    30    Tokyo
CLARK    10    Beijing
SCOTT    20    London
KING    10    Beijing
TURNER    30    Tokyo
ADAMS    20    London
JAMES    30    Tokyo
FORD    20    London
MILLER    10    Beijing
SMITH    20    London
ALLEN    30    Tokyo
WARD    30    Tokyo
JONES    20    London
MARTIN    30    Tokyo
BLAKE    30    Tokyo
CLARK    10    Beijing
SCOTT    20    London
KING    10    Beijing
TURNER    30    Tokyo
ADAMS    20    London
JAMES    30    Tokyo
FORD    20    London
MILLER    10    Beijing
Time taken: 56.659 seconds, Fetched: 28 row(s)
hive (yinzhengjie)> 
Join语句-多表连接查询(hive (yinzhengjie)> SELECT e.ename, d.deptno, l. loc_name FROM emp e JOIN dept d ON d.deptno = e.deptno JOIN location l ON d.loc = l.loc;)
Join语句-笛卡尔积(hive (yinzhengjie)> select * from emp, dept;)
    笛卡尔集会在下面条件下产生:
        1>.省略连接条件
        2>.连接条件无效
        3>.所有表中的所有行互相连接
    
hive (yinzhengjie)> set hive.mapred.mode=strict;
hive (yinzhengjie)> set hive.mapred.mode;
hive.mapred.mode=strict
hive (yinzhengjie)> select * from emp, dept;                    #在strict模式执行笛卡尔积操作是失败的
FAILED: SemanticException Cartesian products are disabled for safety reasons. If you know what you are doing, please make sure that hive.strict.checks.cartesian.product is set to false and that hive.mapred.mode is not set to 'strict' to enable them.
hive (yinzhengjie)> 
hive (yinzhengjie)> set hive.mapred.mode=nonstrict;
hive (yinzhengjie)> set hive.mapred.mode;
hive.mapred.mode=nonstrict
hive (yinzhengjie)> select empno, deptno from emp, dept;
FAILED: SemanticException Column deptno Found in more than One Tables/Subqueries
hive (yinzhengjie)> select * from emp, dept;                    #在nonstrict模式执行笛卡尔积操作是可以的,但不推荐使用这样的查询语句,意义不大!
Warning: Map Join MAPJOIN[9][bigTable=?] in task 'Stage-3:MAPRED' is a cross product
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180810000249_98e28c13-db4d-4e2b-81c6-28e44bf51f1d
Total jobs = 1
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/soft/apache-hive-2.1.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hbase-1.2.6/lib/phoenix-4.10.0-HBase-1.2-client.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
2018-08-10 00:03:00    Starting to launch local task to process map join;    maximum memory = 477626368
2018-08-10 00:03:04    Dump the side-table for tag: 1 with group count: 1 into file: file:/home/yinzhengjie/yinzhengjie/85f0ef7d-ce74-41a8-942e-d1798288e72b/hive_2018-08-10_00-02-49_246_882868568149391185-1/-local-10004/HashTable-Stage-3/MapJoin-mapfile21--.hashtable
2018-08-10 00:03:04    Uploaded 1 File to: file:/home/yinzhengjie/yinzhengjie/85f0ef7d-ce74-41a8-942e-d1798288e72b/hive_2018-08-10_00-02-49_246_882868568149391185-1/-local-10004/HashTable-Stage-3/MapJoin-mapfile21--.hashtable (418 bytes)
2018-08-10 00:03:04    End of local task; Time Taken: 3.916 sec.
Execution completed successfully
MapredLocal task succeeded
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1533789743141_0037, Tracking URL = http://s101:8088/proxy/application_1533789743141_0037/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0037
Hadoop job information for Stage-3: number of mappers: 1; number of reducers: 0
2018-08-10 00:03:27,349 Stage-3 map = 0%,  reduce = 0%
2018-08-10 00:03:40,822 Stage-3 map = 100%,  reduce = 0%, Cumulative CPU 1.8 sec
MapReduce Total cumulative CPU time: 1 seconds 800 msec
Ended Job = job_1533789743141_0037
MapReduce Jobs Launched: 
Stage-Stage-3: Map: 1   Cumulative CPU: 1.8 sec   HDFS Read: 8853 HDFS Write: 17375 SUCCESS
Total MapReduce CPU Time Spent: 1 seconds 800 msec
OK
emp.empno    emp.ename    emp.job    emp.mgr    emp.hiredate    emp.sal    emp.comm    emp.deptno    dept.deptno    dept.dname    dept.loc
7369    SMITH    CLERK    7902    1980-12-17    800.0    NULL    20    10    ACCOUNTING    2700
7369    SMITH    CLERK    7902    1980-12-17    800.0    NULL    20    20    RESEARCH    3800
7369    SMITH    CLERK    7902    1980-12-17    800.0    NULL    20    30    SALES    5900
7369    SMITH    CLERK    7902    1980-12-17    800.0    NULL    20    40    OPERATIONS    4700
7369    SMITH    CLERK    7902    1980-12-17    800.0    NULL    20    10    ACCOUNTING    1700
7369    SMITH    CLERK    7902    1980-12-17    800.0    NULL    20    20    RESEARCH    1800
7369    SMITH    CLERK    7902    1980-12-17    800.0    NULL    20    30    SALES    1900
7369    SMITH    CLERK    7902    1980-12-17    800.0    NULL    20    40    OPERATIONS    1700
7499    ALLEN    SALESMAN    7698    1981-2-20    1600.0    300.0    30    10    ACCOUNTING    2700
7499    ALLEN    SALESMAN    7698    1981-2-20    1600.0    300.0    30    20    RESEARCH    3800
7499    ALLEN    SALESMAN    7698    1981-2-20    1600.0    300.0    30    30    SALES    5900
7499    ALLEN    SALESMAN    7698    1981-2-20    1600.0    300.0    30    40    OPERATIONS    4700
7499    ALLEN    SALESMAN    7698    1981-2-20    1600.0    300.0    30    10    ACCOUNTING    1700
7499    ALLEN    SALESMAN    7698    1981-2-20    1600.0    300.0    30    20    RESEARCH    1800
7499    ALLEN    SALESMAN    7698    1981-2-20    1600.0    300.0    30    30    SALES    1900
7499    ALLEN    SALESMAN    7698    1981-2-20    1600.0    300.0    30    40    OPERATIONS    1700
7521    WARD    SALESMAN    7698    1981-2-22    1250.0    500.0    30    10    ACCOUNTING    2700
7521    WARD    SALESMAN    7698    1981-2-22    1250.0    500.0    30    20    RESEARCH    3800
7521    WARD    SALESMAN    7698    1981-2-22    1250.0    500.0    30    30    SALES    5900
7521    WARD    SALESMAN    7698    1981-2-22    1250.0    500.0    30    40    OPERATIONS    4700
7521    WARD    SALESMAN    7698    1981-2-22    1250.0    500.0    30    10    ACCOUNTING    1700
7521    WARD    SALESMAN    7698    1981-2-22    1250.0    500.0    30    20    RESEARCH    1800
7521    WARD    SALESMAN    7698    1981-2-22    1250.0    500.0    30    30    SALES    1900
7521    WARD    SALESMAN    7698    1981-2-22    1250.0    500.0    30    40    OPERATIONS    1700
7566    JONES    MANAGER    7839    1981-4-2    2975.0    NULL    20    10    ACCOUNTING    2700
7566    JONES    MANAGER    7839    1981-4-2    2975.0    NULL    20    20    RESEARCH    3800
7566    JONES    MANAGER    7839    1981-4-2    2975.0    NULL    20    30    SALES    5900
7566    JONES    MANAGER    7839    1981-4-2    2975.0    NULL    20    40    OPERATIONS    4700
7566    JONES    MANAGER    7839    1981-4-2    2975.0    NULL    20    10    ACCOUNTING    1700
7566    JONES    MANAGER    7839    1981-4-2    2975.0    NULL    20    20    RESEARCH    1800
7566    JONES    MANAGER    7839    1981-4-2    2975.0    NULL    20    30    SALES    1900
7566    JONES    MANAGER    7839    1981-4-2    2975.0    NULL    20    40    OPERATIONS    1700
7654    MARTIN    SALESMAN    7698    1981-9-28    1250.0    1400.0    30    10    ACCOUNTING    2700
7654    MARTIN    SALESMAN    7698    1981-9-28    1250.0    1400.0    30    20    RESEARCH    3800
7654    MARTIN    SALESMAN    7698    1981-9-28    1250.0    1400.0    30    30    SALES    5900
7654    MARTIN    SALESMAN    7698    1981-9-28    1250.0    1400.0    30    40    OPERATIONS    4700
7654    MARTIN    SALESMAN    7698    1981-9-28    1250.0    1400.0    30    10    ACCOUNTING    1700
7654    MARTIN    SALESMAN    7698    1981-9-28    1250.0    1400.0    30    20    RESEARCH    1800
7654    MARTIN    SALESMAN    7698    1981-9-28    1250.0    1400.0    30    30    SALES    1900
7654    MARTIN    SALESMAN    7698    1981-9-28    1250.0    1400.0    30    40    OPERATIONS    1700
7698    BLAKE    MANAGER    7839    1981-5-1    2850.0    NULL    30    10    ACCOUNTING    2700
7698    BLAKE    MANAGER    7839    1981-5-1    2850.0    NULL    30    20    RESEARCH    3800
7698    BLAKE    MANAGER    7839    1981-5-1    2850.0    NULL    30    30    SALES    5900
7698    BLAKE    MANAGER    7839    1981-5-1    2850.0    NULL    30    40    OPERATIONS    4700
7698    BLAKE    MANAGER    7839    1981-5-1    2850.0    NULL    30    10    ACCOUNTING    1700
7698    BLAKE    MANAGER    7839    1981-5-1    2850.0    NULL    30    20    RESEARCH    1800
7698    BLAKE    MANAGER    7839    1981-5-1    2850.0    NULL    30    30    SALES    1900
7698    BLAKE    MANAGER    7839    1981-5-1    2850.0    NULL    30    40    OPERATIONS    1700
7782    CLARK    MANAGER    7839    1981-6-9    2450.0    NULL    10    10    ACCOUNTING    2700
7782    CLARK    MANAGER    7839    1981-6-9    2450.0    NULL    10    20    RESEARCH    3800
7782    CLARK    MANAGER    7839    1981-6-9    2450.0    NULL    10    30    SALES    5900
7782    CLARK    MANAGER    7839    1981-6-9    2450.0    NULL    10    40    OPERATIONS    4700
7782    CLARK    MANAGER    7839    1981-6-9    2450.0    NULL    10    10    ACCOUNTING    1700
7782    CLARK    MANAGER    7839    1981-6-9    2450.0    NULL    10    20    RESEARCH    1800
7782    CLARK    MANAGER    7839    1981-6-9    2450.0    NULL    10    30    SALES    1900
7782    CLARK    MANAGER    7839    1981-6-9    2450.0    NULL    10    40    OPERATIONS    1700
7788    SCOTT    ANALYST    7566    1987-4-19    3000.0    NULL    20    10    ACCOUNTING    2700
7788    SCOTT    ANALYST    7566    1987-4-19    3000.0    NULL    20    20    RESEARCH    3800
7788    SCOTT    ANALYST    7566    1987-4-19    3000.0    NULL    20    30    SALES    5900
7788    SCOTT    ANALYST    7566    1987-4-19    3000.0    NULL    20    40    OPERATIONS    4700
7788    SCOTT    ANALYST    7566    1987-4-19    3000.0    NULL    20    10    ACCOUNTING    1700
7788    SCOTT    ANALYST    7566    1987-4-19    3000.0    NULL    20    20    RESEARCH    1800
7788    SCOTT    ANALYST    7566    1987-4-19    3000.0    NULL    20    30    SALES    1900
7788    SCOTT    ANALYST    7566    1987-4-19    3000.0    NULL    20    40    OPERATIONS    1700
7839    KING    PRESIDENT    NULL    1981-11-17    5000.0    NULL    10    10    ACCOUNTING    2700
7839    KING    PRESIDENT    NULL    1981-11-17    5000.0    NULL    10    20    RESEARCH    3800
7839    KING    PRESIDENT    NULL    1981-11-17    5000.0    NULL    10    30    SALES    5900
7839    KING    PRESIDENT    NULL    1981-11-17    5000.0    NULL    10    40    OPERATIONS    4700
7839    KING    PRESIDENT    NULL    1981-11-17    5000.0    NULL    10    10    ACCOUNTING    1700
7839    KING    PRESIDENT    NULL    1981-11-17    5000.0    NULL    10    20    RESEARCH    1800
7839    KING    PRESIDENT    NULL    1981-11-17    5000.0    NULL    10    30    SALES    1900
7839    KING    PRESIDENT    NULL    1981-11-17    5000.0    NULL    10    40    OPERATIONS    1700
7844    TURNER    SALESMAN    7698    1981-9-8    1500.0    0.0    30    10    ACCOUNTING    2700
7844    TURNER    SALESMAN    7698    1981-9-8    1500.0    0.0    30    20    RESEARCH    3800
7844    TURNER    SALESMAN    7698    1981-9-8    1500.0    0.0    30    30    SALES    5900
7844    TURNER    SALESMAN    7698    1981-9-8    1500.0    0.0    30    40    OPERATIONS    4700
7844    TURNER    SALESMAN    7698    1981-9-8    1500.0    0.0    30    10    ACCOUNTING    1700
7844    TURNER    SALESMAN    7698    1981-9-8    1500.0    0.0    30    20    RESEARCH    1800
7844    TURNER    SALESMAN    7698    1981-9-8    1500.0    0.0    30    30    SALES    1900
7844    TURNER    SALESMAN    7698    1981-9-8    1500.0    0.0    30    40    OPERATIONS    1700
7876    ADAMS    CLERK    7788    1987-5-23    1100.0    NULL    20    10    ACCOUNTING    2700
7876    ADAMS    CLERK    7788    1987-5-23    1100.0    NULL    20    20    RESEARCH    3800
7876    ADAMS    CLERK    7788    1987-5-23    1100.0    NULL    20    30    SALES    5900
7876    ADAMS    CLERK    7788    1987-5-23    1100.0    NULL    20    40    OPERATIONS    4700
7876    ADAMS    CLERK    7788    1987-5-23    1100.0    NULL    20    10    ACCOUNTING    1700
7876    ADAMS    CLERK    7788    1987-5-23    1100.0    NULL    20    20    RESEARCH    1800
7876    ADAMS    CLERK    7788    1987-5-23    1100.0    NULL    20    30    SALES    1900
7876    ADAMS    CLERK    7788    1987-5-23    1100.0    NULL    20    40    OPERATIONS    1700
7900    JAMES    CLERK    7698    1981-12-3    950.0    NULL    30    10    ACCOUNTING    2700
7900    JAMES    CLERK    7698    1981-12-3    950.0    NULL    30    20    RESEARCH    3800
7900    JAMES    CLERK    7698    1981-12-3    950.0    NULL    30    30    SALES    5900
7900    JAMES    CLERK    7698    1981-12-3    950.0    NULL    30    40    OPERATIONS    4700
7900    JAMES    CLERK    7698    1981-12-3    950.0    NULL    30    10    ACCOUNTING    1700
7900    JAMES    CLERK    7698    1981-12-3    950.0    NULL    30    20    RESEARCH    1800
7900    JAMES    CLERK    7698    1981-12-3    950.0    NULL    30    30    SALES    1900
7900    JAMES    CLERK    7698    1981-12-3    950.0    NULL    30    40    OPERATIONS    1700
7902    FORD    ANALYST    7566    1981-12-3    3000.0    NULL    20    10    ACCOUNTING    2700
7902    FORD    ANALYST    7566    1981-12-3    3000.0    NULL    20    20    RESEARCH    3800
7902    FORD    ANALYST    7566    1981-12-3    3000.0    NULL    20    30    SALES    5900
7902    FORD    ANALYST    7566    1981-12-3    3000.0    NULL    20    40    OPERATIONS    4700
7902    FORD    ANALYST    7566    1981-12-3    3000.0    NULL    20    10    ACCOUNTING    1700
7902    FORD    ANALYST    7566    1981-12-3    3000.0    NULL    20    20    RESEARCH    1800
7902    FORD    ANALYST    7566    1981-12-3    3000.0    NULL    20    30    SALES    1900
7902    FORD    ANALYST    7566    1981-12-3    3000.0    NULL    20    40    OPERATIONS    1700
7934    MILLER    CLERK    7782    1982-1-23    1300.0    NULL    10    10    ACCOUNTING    2700
7934    MILLER    CLERK    7782    1982-1-23    1300.0    NULL    10    20    RESEARCH    3800
7934    MILLER    CLERK    7782    1982-1-23    1300.0    NULL    10    30    SALES    5900
7934    MILLER    CLERK    7782    1982-1-23    1300.0    NULL    10    40    OPERATIONS    4700
7934    MILLER    CLERK    7782    1982-1-23    1300.0    NULL    10    10    ACCOUNTING    1700
7934    MILLER    CLERK    7782    1982-1-23    1300.0    NULL    10    20    RESEARCH    1800
7934    MILLER    CLERK    7782    1982-1-23    1300.0    NULL    10    30    SALES    1900
7934    MILLER    CLERK    7782    1982-1-23    1300.0    NULL    10    40    OPERATIONS    1700
7369    SMITH    CLERK    7902    1980-12-17    800.0    NULL    20    10    ACCOUNTING    2700
7369    SMITH    CLERK    7902    1980-12-17    800.0    NULL    20    20    RESEARCH    3800
7369    SMITH    CLERK    7902    1980-12-17    800.0    NULL    20    30    SALES    5900
7369    SMITH    CLERK    7902    1980-12-17    800.0    NULL    20    40    OPERATIONS    4700
7369    SMITH    CLERK    7902    1980-12-17    800.0    NULL    20    10    ACCOUNTING    1700
7369    SMITH    CLERK    7902    1980-12-17    800.0    NULL    20    20    RESEARCH    1800
7369    SMITH    CLERK    7902    1980-12-17    800.0    NULL    20    30    SALES    1900
7369    SMITH    CLERK    7902    1980-12-17    800.0    NULL    20    40    OPERATIONS    1700
7499    ALLEN    SALESMAN    7698    1981-2-20    1600.0    300.0    30    10    ACCOUNTING    2700
7499    ALLEN    SALESMAN    7698    1981-2-20    1600.0    300.0    30    20    RESEARCH    3800
7499    ALLEN    SALESMAN    7698    1981-2-20    1600.0    300.0    30    30    SALES    5900
7499    ALLEN    SALESMAN    7698    1981-2-20    1600.0    300.0    30    40    OPERATIONS    4700
7499    ALLEN    SALESMAN    7698    1981-2-20    1600.0    300.0    30    10    ACCOUNTING    1700
7499    ALLEN    SALESMAN    7698    1981-2-20    1600.0    300.0    30    20    RESEARCH    1800
7499    ALLEN    SALESMAN    7698    1981-2-20    1600.0    300.0    30    30    SALES    1900
7499    ALLEN    SALESMAN    7698    1981-2-20    1600.0    300.0    30    40    OPERATIONS    1700
7521    WARD    SALESMAN    7698    1981-2-22    1250.0    500.0    30    10    ACCOUNTING    2700
7521    WARD    SALESMAN    7698    1981-2-22    1250.0    500.0    30    20    RESEARCH    3800
7521    WARD    SALESMAN    7698    1981-2-22    1250.0    500.0    30    30    SALES    5900
7521    WARD    SALESMAN    7698    1981-2-22    1250.0    500.0    30    40    OPERATIONS    4700
7521    WARD    SALESMAN    7698    1981-2-22    1250.0    500.0    30    10    ACCOUNTING    1700
7521    WARD    SALESMAN    7698    1981-2-22    1250.0    500.0    30    20    RESEARCH    1800
7521    WARD    SALESMAN    7698    1981-2-22    1250.0    500.0    30    30    SALES    1900
7521    WARD    SALESMAN    7698    1981-2-22    1250.0    500.0    30    40    OPERATIONS    1700
7566    JONES    MANAGER    7839    1981-4-2    2975.0    NULL    20    10    ACCOUNTING    2700
7566    JONES    MANAGER    7839    1981-4-2    2975.0    NULL    20    20    RESEARCH    3800
7566    JONES    MANAGER    7839    1981-4-2    2975.0    NULL    20    30    SALES    5900
7566    JONES    MANAGER    7839    1981-4-2    2975.0    NULL    20    40    OPERATIONS    4700
7566    JONES    MANAGER    7839    1981-4-2    2975.0    NULL    20    10    ACCOUNTING    1700
7566    JONES    MANAGER    7839    1981-4-2    2975.0    NULL    20    20    RESEARCH    1800
7566    JONES    MANAGER    7839    1981-4-2    2975.0    NULL    20    30    SALES    1900
7566    JONES    MANAGER    7839    1981-4-2    2975.0    NULL    20    40    OPERATIONS    1700
7654    MARTIN    SALESMAN    7698    1981-9-28    1250.0    1400.0    30    10    ACCOUNTING    2700
7654    MARTIN    SALESMAN    7698    1981-9-28    1250.0    1400.0    30    20    RESEARCH    3800
7654    MARTIN    SALESMAN    7698    1981-9-28    1250.0    1400.0    30    30    SALES    5900
7654    MARTIN    SALESMAN    7698    1981-9-28    1250.0    1400.0    30    40    OPERATIONS    4700
7654    MARTIN    SALESMAN    7698    1981-9-28    1250.0    1400.0    30    10    ACCOUNTING    1700
7654    MARTIN    SALESMAN    7698    1981-9-28    1250.0    1400.0    30    20    RESEARCH    1800
7654    MARTIN    SALESMAN    7698    1981-9-28    1250.0    1400.0    30    30    SALES    1900
7654    MARTIN    SALESMAN    7698    1981-9-28    1250.0    1400.0    30    40    OPERATIONS    1700
7698    BLAKE    MANAGER    7839    1981-5-1    2850.0    NULL    30    10    ACCOUNTING    2700
7698    BLAKE    MANAGER    7839    1981-5-1    2850.0    NULL    30    20    RESEARCH    3800
7698    BLAKE    MANAGER    7839    1981-5-1    2850.0    NULL    30    30    SALES    5900
7698    BLAKE    MANAGER    7839    1981-5-1    2850.0    NULL    30    40    OPERATIONS    4700
7698    BLAKE    MANAGER    7839    1981-5-1    2850.0    NULL    30    10    ACCOUNTING    1700
7698    BLAKE    MANAGER    7839    1981-5-1    2850.0    NULL    30    20    RESEARCH    1800
7698    BLAKE    MANAGER    7839    1981-5-1    2850.0    NULL    30    30    SALES    1900
7698    BLAKE    MANAGER    7839    1981-5-1    2850.0    NULL    30    40    OPERATIONS    1700
7782    CLARK    MANAGER    7839    1981-6-9    2450.0    NULL    10    10    ACCOUNTING    2700
7782    CLARK    MANAGER    7839    1981-6-9    2450.0    NULL    10    20    RESEARCH    3800
7782    CLARK    MANAGER    7839    1981-6-9    2450.0    NULL    10    30    SALES    5900
7782    CLARK    MANAGER    7839    1981-6-9    2450.0    NULL    10    40    OPERATIONS    4700
7782    CLARK    MANAGER    7839    1981-6-9    2450.0    NULL    10    10    ACCOUNTING    1700
7782    CLARK    MANAGER    7839    1981-6-9    2450.0    NULL    10    20    RESEARCH    1800
7782    CLARK    MANAGER    7839    1981-6-9    2450.0    NULL    10    30    SALES    1900
7782    CLARK    MANAGER    7839    1981-6-9    2450.0    NULL    10    40    OPERATIONS    1700
7788    SCOTT    ANALYST    7566    1987-4-19    3000.0    NULL    20    10    ACCOUNTING    2700
7788    SCOTT    ANALYST    7566    1987-4-19    3000.0    NULL    20    20    RESEARCH    3800
7788    SCOTT    ANALYST    7566    1987-4-19    3000.0    NULL    20    30    SALES    5900
7788    SCOTT    ANALYST    7566    1987-4-19    3000.0    NULL    20    40    OPERATIONS    4700
7788    SCOTT    ANALYST    7566    1987-4-19    3000.0    NULL    20    10    ACCOUNTING    1700
7788    SCOTT    ANALYST    7566    1987-4-19    3000.0    NULL    20    20    RESEARCH    1800
7788    SCOTT    ANALYST    7566    1987-4-19    3000.0    NULL    20    30    SALES    1900
7788    SCOTT    ANALYST    7566    1987-4-19    3000.0    NULL    20    40    OPERATIONS    1700
7839    KING    PRESIDENT    NULL    1981-11-17    5000.0    NULL    10    10    ACCOUNTING    2700
7839    KING    PRESIDENT    NULL    1981-11-17    5000.0    NULL    10    20    RESEARCH    3800
7839    KING    PRESIDENT    NULL    1981-11-17    5000.0    NULL    10    30    SALES    5900
7839    KING    PRESIDENT    NULL    1981-11-17    5000.0    NULL    10    40    OPERATIONS    4700
7839    KING    PRESIDENT    NULL    1981-11-17    5000.0    NULL    10    10    ACCOUNTING    1700
7839    KING    PRESIDENT    NULL    1981-11-17    5000.0    NULL    10    20    RESEARCH    1800
7839    KING    PRESIDENT    NULL    1981-11-17    5000.0    NULL    10    30    SALES    1900
7839    KING    PRESIDENT    NULL    1981-11-17    5000.0    NULL    10    40    OPERATIONS    1700
7844    TURNER    SALESMAN    7698    1981-9-8    1500.0    0.0    30    10    ACCOUNTING    2700
7844    TURNER    SALESMAN    7698    1981-9-8    1500.0    0.0    30    20    RESEARCH    3800
7844    TURNER    SALESMAN    7698    1981-9-8    1500.0    0.0    30    30    SALES    5900
7844    TURNER    SALESMAN    7698    1981-9-8    1500.0    0.0    30    40    OPERATIONS    4700
7844    TURNER    SALESMAN    7698    1981-9-8    1500.0    0.0    30    10    ACCOUNTING    1700
7844    TURNER    SALESMAN    7698    1981-9-8    1500.0    0.0    30    20    RESEARCH    1800
7844    TURNER    SALESMAN    7698    1981-9-8    1500.0    0.0    30    30    SALES    1900
7844    TURNER    SALESMAN    7698    1981-9-8    1500.0    0.0    30    40    OPERATIONS    1700
7876    ADAMS    CLERK    7788    1987-5-23    1100.0    NULL    20    10    ACCOUNTING    2700
7876    ADAMS    CLERK    7788    1987-5-23    1100.0    NULL    20    20    RESEARCH    3800
7876    ADAMS    CLERK    7788    1987-5-23    1100.0    NULL    20    30    SALES    5900
7876    ADAMS    CLERK    7788    1987-5-23    1100.0    NULL    20    40    OPERATIONS    4700
7876    ADAMS    CLERK    7788    1987-5-23    1100.0    NULL    20    10    ACCOUNTING    1700
7876    ADAMS    CLERK    7788    1987-5-23    1100.0    NULL    20    20    RESEARCH    1800
7876    ADAMS    CLERK    7788    1987-5-23    1100.0    NULL    20    30    SALES    1900
7876    ADAMS    CLERK    7788    1987-5-23    1100.0    NULL    20    40    OPERATIONS    1700
7900    JAMES    CLERK    7698    1981-12-3    950.0    NULL    30    10    ACCOUNTING    2700
7900    JAMES    CLERK    7698    1981-12-3    950.0    NULL    30    20    RESEARCH    3800
7900    JAMES    CLERK    7698    1981-12-3    950.0    NULL    30    30    SALES    5900
7900    JAMES    CLERK    7698    1981-12-3    950.0    NULL    30    40    OPERATIONS    4700
7900    JAMES    CLERK    7698    1981-12-3    950.0    NULL    30    10    ACCOUNTING    1700
7900    JAMES    CLERK    7698    1981-12-3    950.0    NULL    30    20    RESEARCH    1800
7900    JAMES    CLERK    7698    1981-12-3    950.0    NULL    30    30    SALES    1900
7900    JAMES    CLERK    7698    1981-12-3    950.0    NULL    30    40    OPERATIONS    1700
7902    FORD    ANALYST    7566    1981-12-3    3000.0    NULL    20    10    ACCOUNTING    2700
7902    FORD    ANALYST    7566    1981-12-3    3000.0    NULL    20    20    RESEARCH    3800
7902    FORD    ANALYST    7566    1981-12-3    3000.0    NULL    20    30    SALES    5900
7902    FORD    ANALYST    7566    1981-12-3    3000.0    NULL    20    40    OPERATIONS    4700
7902    FORD    ANALYST    7566    1981-12-3    3000.0    NULL    20    10    ACCOUNTING    1700
7902    FORD    ANALYST    7566    1981-12-3    3000.0    NULL    20    20    RESEARCH    1800
7902    FORD    ANALYST    7566    1981-12-3    3000.0    NULL    20    30    SALES    1900
7902    FORD    ANALYST    7566    1981-12-3    3000.0    NULL    20    40    OPERATIONS    1700
7934    MILLER    CLERK    7782    1982-1-23    1300.0    NULL    10    10    ACCOUNTING    2700
7934    MILLER    CLERK    7782    1982-1-23    1300.0    NULL    10    20    RESEARCH    3800
7934    MILLER    CLERK    7782    1982-1-23    1300.0    NULL    10    30    SALES    5900
7934    MILLER    CLERK    7782    1982-1-23    1300.0    NULL    10    40    OPERATIONS    4700
7934    MILLER    CLERK    7782    1982-1-23    1300.0    NULL    10    10    ACCOUNTING    1700
7934    MILLER    CLERK    7782    1982-1-23    1300.0    NULL    10    20    RESEARCH    1800
7934    MILLER    CLERK    7782    1982-1-23    1300.0    NULL    10    30    SALES    1900
7934    MILLER    CLERK    7782    1982-1-23    1300.0    NULL    10    40    OPERATIONS    1700
Time taken: 52.698 seconds, Fetched: 224 row(s)
hive (yinzhengjie)> 
Join语句-笛卡尔积,不推荐使用,我们应该避免笛卡尔积的查询,因为在实际生产环境中使用笛卡尔积查询对hadoop的集群是压力是很大的,如果集群配置低的话很可能让整个集群崩掉!!!(hive (yinzhengjie)> select * from emp, dept;)
排序-全局排序(hive (yinzhengjie)> select * from emp order by sal desc;)
    Order By:全局排序,一个MapReduce
        1>.使用 ORDER BY 子句排序
            ASC(ascend): 升序(默认)
            DESC(descend): 降序
        2>.ORDER BY 子句在SELECT语句的结尾。

hive (yinzhengjie)> select * from emp order by sal;                                #查询员工信息按工资升序排列,默认就是升序排列
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180810001838_6c529433-c84b-447d-89e0-16af47dc89eb
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Starting Job = job_1533789743141_0039, Tracking URL = http://s101:8088/proxy/application_1533789743141_0039/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0039
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2018-08-10 00:18:56,082 Stage-1 map = 0%,  reduce = 0%
2018-08-10 00:19:37,122 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.66 sec
2018-08-10 00:19:59,288 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 4.41 sec
MapReduce Total cumulative CPU time: 4 seconds 410 msec
Ended Job = job_1533789743141_0039
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 1   Cumulative CPU: 4.41 sec   HDFS Read: 10952 HDFS Write: 1745 SUCCESS
Total MapReduce CPU Time Spent: 4 seconds 410 msec
OK
emp.empno    emp.ename    emp.job    emp.mgr    emp.hiredate    emp.sal    emp.comm    emp.deptno
7369    SMITH    CLERK    7902    1980-12-17    800.0    NULL    20
7369    SMITH    CLERK    7902    1980-12-17    800.0    NULL    20
7900    JAMES    CLERK    7698    1981-12-3    950.0    NULL    30
7900    JAMES    CLERK    7698    1981-12-3    950.0    NULL    30
7876    ADAMS    CLERK    7788    1987-5-23    1100.0    NULL    20
7876    ADAMS    CLERK    7788    1987-5-23    1100.0    NULL    20
7521    WARD    SALESMAN    7698    1981-2-22    1250.0    500.0    30
7521    WARD    SALESMAN    7698    1981-2-22    1250.0    500.0    30
7654    MARTIN    SALESMAN    7698    1981-9-28    1250.0    1400.0    30
7654    MARTIN    SALESMAN    7698    1981-9-28    1250.0    1400.0    30
7934    MILLER    CLERK    7782    1982-1-23    1300.0    NULL    10
7934    MILLER    CLERK    7782    1982-1-23    1300.0    NULL    10
7844    TURNER    SALESMAN    7698    1981-9-8    1500.0    0.0    30
7844    TURNER    SALESMAN    7698    1981-9-8    1500.0    0.0    30
7499    ALLEN    SALESMAN    7698    1981-2-20    1600.0    300.0    30
7499    ALLEN    SALESMAN    7698    1981-2-20    1600.0    300.0    30
7782    CLARK    MANAGER    7839    1981-6-9    2450.0    NULL    10
7782    CLARK    MANAGER    7839    1981-6-9    2450.0    NULL    10
7698    BLAKE    MANAGER    7839    1981-5-1    2850.0    NULL    30
7698    BLAKE    MANAGER    7839    1981-5-1    2850.0    NULL    30
7566    JONES    MANAGER    7839    1981-4-2    2975.0    NULL    20
7566    JONES    MANAGER    7839    1981-4-2    2975.0    NULL    20
7788    SCOTT    ANALYST    7566    1987-4-19    3000.0    NULL    20
7788    SCOTT    ANALYST    7566    1987-4-19    3000.0    NULL    20
7902    FORD    ANALYST    7566    1981-12-3    3000.0    NULL    20
7902    FORD    ANALYST    7566    1981-12-3    3000.0    NULL    20
7839    KING    PRESIDENT    NULL    1981-11-17    5000.0    NULL    10
7839    KING    PRESIDENT    NULL    1981-11-17    5000.0    NULL    10
Time taken: 82.564 seconds, Fetched: 28 row(s)
hive (yinzhengjie)>
hive (yinzhengjie)> select * from emp order by sal desc;                        #查询员工信息按工资降序排列
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180810002012_ebf1251c-c92b-4010-bea7-bb8a2c34ebdb
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Starting Job = job_1533789743141_0040, Tracking URL = http://s101:8088/proxy/application_1533789743141_0040/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0040
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2018-08-10 00:20:30,216 Stage-1 map = 0%,  reduce = 0%
2018-08-10 00:20:44,683 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.47 sec
2018-08-10 00:21:00,184 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 5.31 sec
MapReduce Total cumulative CPU time: 5 seconds 310 msec
Ended Job = job_1533789743141_0040
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 1   Cumulative CPU: 5.31 sec   HDFS Read: 10952 HDFS Write: 1745 SUCCESS
Total MapReduce CPU Time Spent: 5 seconds 310 msec
OK
emp.empno    emp.ename    emp.job    emp.mgr    emp.hiredate    emp.sal    emp.comm    emp.deptno
7839    KING    PRESIDENT    NULL    1981-11-17    5000.0    NULL    10
7839    KING    PRESIDENT    NULL    1981-11-17    5000.0    NULL    10
7902    FORD    ANALYST    7566    1981-12-3    3000.0    NULL    20
7788    SCOTT    ANALYST    7566    1987-4-19    3000.0    NULL    20
7788    SCOTT    ANALYST    7566    1987-4-19    3000.0    NULL    20
7902    FORD    ANALYST    7566    1981-12-3    3000.0    NULL    20
7566    JONES    MANAGER    7839    1981-4-2    2975.0    NULL    20
7566    JONES    MANAGER    7839    1981-4-2    2975.0    NULL    20
7698    BLAKE    MANAGER    7839    1981-5-1    2850.0    NULL    30
7698    BLAKE    MANAGER    7839    1981-5-1    2850.0    NULL    30
7782    CLARK    MANAGER    7839    1981-6-9    2450.0    NULL    10
7782    CLARK    MANAGER    7839    1981-6-9    2450.0    NULL    10
7499    ALLEN    SALESMAN    7698    1981-2-20    1600.0    300.0    30
7499    ALLEN    SALESMAN    7698    1981-2-20    1600.0    300.0    30
7844    TURNER    SALESMAN    7698    1981-9-8    1500.0    0.0    30
7844    TURNER    SALESMAN    7698    1981-9-8    1500.0    0.0    30
7934    MILLER    CLERK    7782    1982-1-23    1300.0    NULL    10
7934    MILLER    CLERK    7782    1982-1-23    1300.0    NULL    10
7521    WARD    SALESMAN    7698    1981-2-22    1250.0    500.0    30
7654    MARTIN    SALESMAN    7698    1981-9-28    1250.0    1400.0    30
7654    MARTIN    SALESMAN    7698    1981-9-28    1250.0    1400.0    30
7521    WARD    SALESMAN    7698    1981-2-22    1250.0    500.0    30
7876    ADAMS    CLERK    7788    1987-5-23    1100.0    NULL    20
7876    ADAMS    CLERK    7788    1987-5-23    1100.0    NULL    20
7900    JAMES    CLERK    7698    1981-12-3    950.0    NULL    30
7900    JAMES    CLERK    7698    1981-12-3    950.0    NULL    30
7369    SMITH    CLERK    7902    1980-12-17    800.0    NULL    20
7369    SMITH    CLERK    7902    1980-12-17    800.0    NULL    20
Time taken: 51.103 seconds, Fetched: 28 row(s)
hive (yinzhengjie)>
排序-全局排序(hive (yinzhengjie)> select * from emp order by sal desc;)
排序-按照别名排序(hive (yinzhengjie)> select ename, sal*2 twosal from emp order by twosal;)
        

hive (yinzhengjie)> select ename, sal*2 twosal from emp order by twosal;            #按照员工薪水的2倍排序
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180810002258_b9f73ab7-2a29-459a-9b27-119eb56f1dde
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Starting Job = job_1533789743141_0041, Tracking URL = http://s101:8088/proxy/application_1533789743141_0041/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0041
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2018-08-10 00:23:17,109 Stage-1 map = 0%,  reduce = 0%
2018-08-10 00:23:29,497 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.6 sec
2018-08-10 00:23:41,890 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 4.99 sec
MapReduce Total cumulative CPU time: 4 seconds 990 msec
Ended Job = job_1533789743141_0041
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 1   Cumulative CPU: 4.99 sec   HDFS Read: 10079 HDFS Write: 789 SUCCESS
Total MapReduce CPU Time Spent: 4 seconds 990 msec
OK
ename    twosal
SMITH    1600.0
SMITH    1600.0
JAMES    1900.0
JAMES    1900.0
ADAMS    2200.0
ADAMS    2200.0
WARD    2500.0
WARD    2500.0
MARTIN    2500.0
MARTIN    2500.0
MILLER    2600.0
MILLER    2600.0
TURNER    3000.0
TURNER    3000.0
ALLEN    3200.0
ALLEN    3200.0
CLARK    4900.0
CLARK    4900.0
BLAKE    5700.0
BLAKE    5700.0
JONES    5950.0
JONES    5950.0
SCOTT    6000.0
SCOTT    6000.0
FORD    6000.0
FORD    6000.0
KING    10000.0
KING    10000.0
Time taken: 44.517 seconds, Fetched: 28 row(s)
hive (yinzhengjie)> 
排序-按照别名排序(hive (yinzhengjie)> select ename, sal*2 twosal from emp order by twosal;)
排序-多个列排序(hive (yinzhengjie)> select ename, deptno, sal from emp order by deptno, sal ;)



hive (yinzhengjie)> select ename, deptno, sal from emp order by deptno, sal ;                #按照部门和工资升序排序
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180810002405_c29a1508-8152-4d7c-9b50-e2fc04c8bdbc
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Starting Job = job_1533789743141_0042, Tracking URL = http://s101:8088/proxy/application_1533789743141_0042/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0042
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2018-08-10 00:24:21,693 Stage-1 map = 0%,  reduce = 0%
2018-08-10 00:24:35,159 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.77 sec
2018-08-10 00:24:44,565 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 3.85 sec
MapReduce Total cumulative CPU time: 3 seconds 850 msec
Ended Job = job_1533789743141_0042
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 1   Cumulative CPU: 3.85 sec   HDFS Read: 9332 HDFS Write: 867 SUCCESS
Total MapReduce CPU Time Spent: 3 seconds 850 msec
OK
ename    deptno    sal
MILLER    10    1300.0
MILLER    10    1300.0
CLARK    10    2450.0
CLARK    10    2450.0
KING    10    5000.0
KING    10    5000.0
SMITH    20    800.0
SMITH    20    800.0
ADAMS    20    1100.0
ADAMS    20    1100.0
JONES    20    2975.0
JONES    20    2975.0
FORD    20    3000.0
SCOTT    20    3000.0
FORD    20    3000.0
SCOTT    20    3000.0
JAMES    30    950.0
JAMES    30    950.0
WARD    30    1250.0
MARTIN    30    1250.0
MARTIN    30    1250.0
WARD    30    1250.0
TURNER    30    1500.0
TURNER    30    1500.0
ALLEN    30    1600.0
ALLEN    30    1600.0
BLAKE    30    2850.0
BLAKE    30    2850.0
Time taken: 39.975 seconds, Fetched: 28 row(s)
hive (yinzhengjie)> 
排序-多个列排序(hive (yinzhengjie)> select ename, deptno, sal from emp order by deptno, sal ;)
排序-每个MapReduce内部排序(hive (yinzhengjie)> insert overwrite local directory '/home/yinzhengjie/download/sortby-result' ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' select * from emp sort by deptno desc;)



hive (yinzhengjie)> set mapreduce.job.reduces=3;                    #设置reduce个数
hive (yinzhengjie)> set mapreduce.job.reduces;                        #查看设置reduce个数
mapreduce.job.reduces=3
hive (yinzhengjie)>  
hive (yinzhengjie)>  select * from emp sort by empno desc;            #根据部门编号降序查看员工信息
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180810002752_cd4d7e0d-be26-4053-8730-9379c1632a3a
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks not specified. Defaulting to jobconf value of: 3
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Starting Job = job_1533789743141_0043, Tracking URL = http://s101:8088/proxy/application_1533789743141_0043/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0043
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 3
2018-08-10 00:28:08,954 Stage-1 map = 0%,  reduce = 0%
2018-08-10 00:28:20,313 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.02 sec
2018-08-10 00:28:33,921 Stage-1 map = 100%,  reduce = 11%, Cumulative CPU 2.45 sec
2018-08-10 00:28:36,045 Stage-1 map = 100%,  reduce = 33%, Cumulative CPU 4.76 sec
2018-08-10 00:28:37,074 Stage-1 map = 100%,  reduce = 67%, Cumulative CPU 7.48 sec
2018-08-10 00:28:54,683 Stage-1 map = 100%,  reduce = 89%, Cumulative CPU 10.02 sec
2018-08-10 00:28:57,007 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 10.69 sec
MapReduce Total cumulative CPU time: 10 seconds 690 msec
Ended Job = job_1533789743141_0043
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 3   Cumulative CPU: 10.69 sec   HDFS Read: 20664 HDFS Write: 1919 SUCCESS
Total MapReduce CPU Time Spent: 10 seconds 690 msec
OK
emp.empno    emp.ename    emp.job    emp.mgr    emp.hiredate    emp.sal    emp.comm    emp.deptno
7876    ADAMS    CLERK    7788    1987-5-23    1100.0    NULL    20
7844    TURNER    SALESMAN    7698    1981-9-8    1500.0    0.0    30
7844    TURNER    SALESMAN    7698    1981-9-8    1500.0    0.0    30
7839    KING    PRESIDENT    NULL    1981-11-17    5000.0    NULL    10
7788    SCOTT    ANALYST    7566    1987-4-19    3000.0    NULL    20
7788    SCOTT    ANALYST    7566    1987-4-19    3000.0    NULL    20
7782    CLARK    MANAGER    7839    1981-6-9    2450.0    NULL    10
7698    BLAKE    MANAGER    7839    1981-5-1    2850.0    NULL    30
7654    MARTIN    SALESMAN    7698    1981-9-28    1250.0    1400.0    30
7654    MARTIN    SALESMAN    7698    1981-9-28    1250.0    1400.0    30
7566    JONES    MANAGER    7839    1981-4-2    2975.0    NULL    20
7369    SMITH    CLERK    7902    1980-12-17    800.0    NULL    20
7934    MILLER    CLERK    7782    1982-1-23    1300.0    NULL    10
7902    FORD    ANALYST    7566    1981-12-3    3000.0    NULL    20
7900    JAMES    CLERK    7698    1981-12-3    950.0    NULL    30
7900    JAMES    CLERK    7698    1981-12-3    950.0    NULL    30
7876    ADAMS    CLERK    7788    1987-5-23    1100.0    NULL    20
7698    BLAKE    MANAGER    7839    1981-5-1    2850.0    NULL    30
7566    JONES    MANAGER    7839    1981-4-2    2975.0    NULL    20
7521    WARD    SALESMAN    7698    1981-2-22    1250.0    500.0    30
7521    WARD    SALESMAN    7698    1981-2-22    1250.0    500.0    30
7499    ALLEN    SALESMAN    7698    1981-2-20    1600.0    300.0    30
7934    MILLER    CLERK    7782    1982-1-23    1300.0    NULL    10
7902    FORD    ANALYST    7566    1981-12-3    3000.0    NULL    20
7839    KING    PRESIDENT    NULL    1981-11-17    5000.0    NULL    10
7782    CLARK    MANAGER    7839    1981-6-9    2450.0    NULL    10
7499    ALLEN    SALESMAN    7698    1981-2-20    1600.0    300.0    30
7369    SMITH    CLERK    7902    1980-12-17    800.0    NULL    20
Time taken: 67.599 seconds, Fetched: 28 row(s)
hive (yinzhengjie)>    
hive (yinzhengjie)> insert overwrite local directory '/home/yinzhengjie/download/sortby-result' ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' select * from emp sort by deptno desc;          #将查询结果导入到文件中(按照部门编号降序排序)
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180810003404_42a220b7-02c7-42ae-bf8a-566c6300f4c3
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks not specified. Defaulting to jobconf value of: 3
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Starting Job = job_1533789743141_0045, Tracking URL = http://s101:8088/proxy/application_1533789743141_0045/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0045
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 3
2018-08-10 00:34:28,526 Stage-1 map = 0%,  reduce = 0%
2018-08-10 00:34:37,987 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.22 sec
2018-08-10 00:34:46,345 Stage-1 map = 100%,  reduce = 33%, Cumulative CPU 3.35 sec
2018-08-10 00:34:49,548 Stage-1 map = 100%,  reduce = 67%, Cumulative CPU 5.71 sec
2018-08-10 00:35:05,098 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 7.57 sec
MapReduce Total cumulative CPU time: 7 seconds 570 msec
Ended Job = job_1533789743141_0045
Moving data to local directory /home/yinzhengjie/download/sortby-result
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 3   Cumulative CPU: 7.57 sec   HDFS Read: 19815 HDFS Write: 1322 SUCCESS
Total MapReduce CPU Time Spent: 7 seconds 570 msec
OK
emp.empno    emp.ename    emp.job    emp.mgr    emp.hiredate    emp.sal    emp.comm    emp.deptno
Time taken: 62.425 seconds
hive (yinzhengjie)> 
排序-每个MapReduce内部排序(hive (yinzhengjie)> insert overwrite local directory '/home/yinzhengjie/download/sortby-result' ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' select * from emp sort by deptno desc;)
排序-分区排序(hive (yinzhengjie)> insert overwrite local directory '/home/yinzhengjie/download/sortby-result'  ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'  select * from emp distribute by deptno sort by empno desc;)
    Distribute By:类似MR中partition,进行分区,结合sort by使用。
    温馨提示,Hive要求DISTRIBUTE BY语句要写在SORT BY语句之前。对于distribute by进行测试,一定要分配多reduce进行处理,否则无法看到distribute by的效果。


    
    

hive (yinzhengjie)> set mapreduce.job.reduces;
mapreduce.job.reduces=3
hive (yinzhengjie)> 
hive (yinzhengjie)> insert overwrite local directory '/home/yinzhengjie/download/sortby-result'  ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'  select * from emp distribute by deptno sort by empno desc;            #先按照部门编号分区,再按照员工编号降序排序。
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180810003826_af885657-4f0a-4e2a-83f3-62cbdabda4f3
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks not specified. Defaulting to jobconf value of: 3
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Starting Job = job_1533789743141_0046, Tracking URL = http://s101:8088/proxy/application_1533789743141_0046/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0046
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 3
2018-08-10 00:38:46,632 Stage-1 map = 0%,  reduce = 0%
2018-08-10 00:39:27,774 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.07 sec
2018-08-10 00:39:45,945 Stage-1 map = 100%,  reduce = 33%, Cumulative CPU 4.54 sec
2018-08-10 00:39:50,095 Stage-1 map = 100%,  reduce = 67%, Cumulative CPU 6.44 sec
2018-08-10 00:39:51,122 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 8.78 sec
MapReduce Total cumulative CPU time: 8 seconds 780 msec
Ended Job = job_1533789743141_0046
Moving data to local directory /home/yinzhengjie/download/sortby-result
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 3   Cumulative CPU: 8.78 sec   HDFS Read: 19858 HDFS Write: 1322 SUCCESS
Total MapReduce CPU Time Spent: 8 seconds 780 msec
OK
emp.empno    emp.ename    emp.job    emp.mgr    emp.hiredate    emp.sal    emp.comm    emp.deptno
Time taken: 86.59 seconds
hive (yinzhengjie)>
排序-分区排序(hive (yinzhengjie)> insert overwrite local directory '/home/yinzhengjie/download/sortby-result' ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' select * from emp distribute by deptno sort by empno desc;)
排序-Cluster By(hive (yinzhengjie)> select * from emp cluster by deptno;)
    当distribute by和sorts by字段相同时,可以使用cluster by方式。
        cluster by除了具有distribute by的功能外还兼具sort by的功能。但是排序只能是倒序排序,不能指定排序规则为ASC或者DESC。
    
    我们可以看以下两个案例,以下两种写法等价:

    
hive (yinzhengjie)> select * from emp cluster by deptno;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180810004115_0faf59ba-950a-4f86-885a-00865338c95c
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks not specified. Defaulting to jobconf value of: 3
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Starting Job = job_1533789743141_0047, Tracking URL = http://s101:8088/proxy/application_1533789743141_0047/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0047
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 3
2018-08-10 00:41:31,323 Stage-1 map = 0%,  reduce = 0%
2018-08-10 00:41:40,638 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.21 sec
2018-08-10 00:41:49,985 Stage-1 map = 100%,  reduce = 33%, Cumulative CPU 3.64 sec
2018-08-10 00:41:58,261 Stage-1 map = 100%,  reduce = 67%, Cumulative CPU 5.93 sec
2018-08-10 00:42:13,824 Stage-1 map = 100%,  reduce = 89%, Cumulative CPU 8.2 sec
2018-08-10 00:42:16,943 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 8.97 sec
MapReduce Total cumulative CPU time: 8 seconds 970 msec
Ended Job = job_1533789743141_0047
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 3   Cumulative CPU: 8.97 sec   HDFS Read: 20707 HDFS Write: 1919 SUCCESS
Total MapReduce CPU Time Spent: 8 seconds 970 msec
OK
emp.empno    emp.ename    emp.job    emp.mgr    emp.hiredate    emp.sal    emp.comm    emp.deptno
7499    ALLEN    SALESMAN    7698    1981-2-20    1600.0    300.0    30
7844    TURNER    SALESMAN    7698    1981-9-8    1500.0    0.0    30
7521    WARD    SALESMAN    7698    1981-2-22    1250.0    500.0    30
7900    JAMES    CLERK    7698    1981-12-3    950.0    NULL    30
7844    TURNER    SALESMAN    7698    1981-9-8    1500.0    0.0    30
7499    ALLEN    SALESMAN    7698    1981-2-20    1600.0    300.0    30
7654    MARTIN    SALESMAN    7698    1981-9-28    1250.0    1400.0    30
7900    JAMES    CLERK    7698    1981-12-3    950.0    NULL    30
7698    BLAKE    MANAGER    7839    1981-5-1    2850.0    NULL    30
7654    MARTIN    SALESMAN    7698    1981-9-28    1250.0    1400.0    30
7698    BLAKE    MANAGER    7839    1981-5-1    2850.0    NULL    30
7521    WARD    SALESMAN    7698    1981-2-22    1250.0    500.0    30
7934    MILLER    CLERK    7782    1982-1-23    1300.0    NULL    10
7839    KING    PRESIDENT    NULL    1981-11-17    5000.0    NULL    10
7782    CLARK    MANAGER    7839    1981-6-9    2450.0    NULL    10
7934    MILLER    CLERK    7782    1982-1-23    1300.0    NULL    10
7839    KING    PRESIDENT    NULL    1981-11-17    5000.0    NULL    10
7782    CLARK    MANAGER    7839    1981-6-9    2450.0    NULL    10
7369    SMITH    CLERK    7902    1980-12-17    800.0    NULL    20
7902    FORD    ANALYST    7566    1981-12-3    3000.0    NULL    20
7788    SCOTT    ANALYST    7566    1987-4-19    3000.0    NULL    20
7369    SMITH    CLERK    7902    1980-12-17    800.0    NULL    20
7566    JONES    MANAGER    7839    1981-4-2    2975.0    NULL    20
7788    SCOTT    ANALYST    7566    1987-4-19    3000.0    NULL    20
7566    JONES    MANAGER    7839    1981-4-2    2975.0    NULL    20
7876    ADAMS    CLERK    7788    1987-5-23    1100.0    NULL    20
7902    FORD    ANALYST    7566    1981-12-3    3000.0    NULL    20
7876    ADAMS    CLERK    7788    1987-5-23    1100.0    NULL    20
Time taken: 64.632 seconds, Fetched: 28 row(s)
hive (yinzhengjie)> select * from emp distribute by deptno sort by deptno;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = yinzhengjie_20180810004343_d5ce078f-80a7-4762-8a00-a75b6a97f7b2
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks not specified. Defaulting to jobconf value of: 3
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Starting Job = job_1533789743141_0048, Tracking URL = http://s101:8088/proxy/application_1533789743141_0048/
Kill Command = /soft/hadoop-2.7.3/bin/hadoop job  -kill job_1533789743141_0048
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 3
2018-08-10 00:43:58,038 Stage-1 map = 0%,  reduce = 0%
2018-08-10 00:44:10,447 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.51 sec
2018-08-10 00:44:23,055 Stage-1 map = 100%,  reduce = 33%, Cumulative CPU 4.62 sec
2018-08-10 00:44:29,343 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 10.22 sec
MapReduce Total cumulative CPU time: 10 seconds 220 msec
Ended Job = job_1533789743141_0048
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 3   Cumulative CPU: 10.22 sec   HDFS Read: 20707 HDFS Write: 1919 SUCCESS
Total MapReduce CPU Time Spent: 10 seconds 220 msec
OK
emp.empno    emp.ename    emp.job    emp.mgr    emp.hiredate    emp.sal    emp.comm    emp.deptno
7499    ALLEN    SALESMAN    7698    1981-2-20    1600.0    300.0    30
7844    TURNER    SALESMAN    7698    1981-9-8    1500.0    0.0    30
7521    WARD    SALESMAN    7698    1981-2-22    1250.0    500.0    30
7900    JAMES    CLERK    7698    1981-12-3    950.0    NULL    30
7844    TURNER    SALESMAN    7698    1981-9-8    1500.0    0.0    30
7499    ALLEN    SALESMAN    7698    1981-2-20    1600.0    300.0    30
7654    MARTIN    SALESMAN    7698    1981-9-28    1250.0    1400.0    30
7900    JAMES    CLERK    7698    1981-12-3    950.0    NULL    30
7698    BLAKE    MANAGER    7839    1981-5-1    2850.0    NULL    30
7654    MARTIN    SALESMAN    7698    1981-9-28    1250.0    1400.0    30
7698    BLAKE    MANAGER    7839    1981-5-1    2850.0    NULL    30
7521    WARD    SALESMAN    7698    1981-2-22    1250.0    500.0    30
7934    MILLER    CLERK    7782    1982-1-23    1300.0    NULL    10
7839    KING    PRESIDENT    NULL    1981-11-17    5000.0    NULL    10
7782    CLARK    MANAGER    7839    1981-6-9    2450.0    NULL    10
7934    MILLER    CLERK    7782    1982-1-23    1300.0    NULL    10
7839    KING    PRESIDENT    NULL    1981-11-17    5000.0    NULL    10
7782    CLARK    MANAGER    7839    1981-6-9    2450.0    NULL    10
7369    SMITH    CLERK    7902    1980-12-17    800.0    NULL    20
7902    FORD    ANALYST    7566    1981-12-3    3000.0    NULL    20
7788    SCOTT    ANALYST    7566    1987-4-19    3000.0    NULL    20
7369    SMITH    CLERK    7902    1980-12-17    800.0    NULL    20
7566    JONES    MANAGER    7839    1981-4-2    2975.0    NULL    20
7788    SCOTT    ANALYST    7566    1987-4-19    3000.0    NULL    20
7566    JONES    MANAGER    7839    1981-4-2    2975.0    NULL    20
7876    ADAMS    CLERK    7788    1987-5-23    1100.0    NULL    20
7902    FORD    ANALYST    7566    1981-12-3    3000.0    NULL    20
7876    ADAMS    CLERK    7788    1987-5-23    1100.0    NULL    20
Time taken: 48.312 seconds, Fetched: 28 row(s)
hive (yinzhengjie)> 
排序-Cluster By(hive (yinzhengjie)> select * from emp cluster by deptno;)
分桶表-分桶抽样查询(hive (yinzhengjie)>  select * from stu_buck tablesample(bucket 1 out of 4 on id);)
    对于非常大的数据集,有时用户需要使用的是一个具有代表性的查询结果而不是全部结果。Hive可以通过对表进行抽样来满足这个需求。


    
    
hive (yinzhengjie)> select * from stu_buck;
OK
stu_buck.id    stu_buck.name
1016    ss16
1012    ss12
1008    ss8
1004    ss4
1001    ss1
1013    ss13
1005    ss5
1009    ss9
1014    ss14
1010    ss10
1006    ss6
1002    ss2
1015    ss15
1007    ss7
1003    ss3
1011    ss11
Time taken: 0.073 seconds, Fetched: 16 row(s)
hive (yinzhengjie)>  select * from stu_buck tablesample(bucket 1 out of 4 on id);        #查询表stu_buck中的数据。
OK
stu_buck.id    stu_buck.name
1016    ss16
1012    ss12
1008    ss8
1004    ss4
Time taken: 0.088 seconds, Fetched: 4 row(s)
hive (yinzhengjie)> 


温馨提示:tablesample是抽样语句,语法:TABLESAMPLE(BUCKET x OUT OF y) 。
    y必须是table总bucket数的倍数或者因子。hive根据y的大小,决定抽样的比例。例如,table总共分了4份,当y=2时,抽取(4/2=)2个bucket的数据,当y=8时,抽取(4/8=)1/2个bucket的数据。
    x表示从哪个bucket开始抽取。例如,table总bucket数为4,tablesample(bucket 4 out of 4),表示总共抽取(4/4=)1个bucket的数据,抽取第4个bucket的数据。
    注意:x的值必须小于等于y的值,否则会抛异常,FAILED: SemanticException [Error 10061]: Numerator should not be bigger than denominator in sample clause for table stu_buck

    
分桶表-分桶抽样查询(hive (yinzhengjie)> select * from stu_buck tablesample(bucket 1 out of 4 on id);)
分桶表-数据块抽样(hive (yinzhengjie)> select * from stu_buck tablesample(0.1 percent);)
    Hive提供了另外一种按照百分比进行抽样的方式,这种是基于行数的,按照输入路径下的数据块百分比进行的抽样。
    
温馨提示:
    这种抽样方式不一定适用于所有的文件格式。另外,这种抽样的最小抽样单元是一个HDFS数据块。因此,如果表的数据大小小于普通的块大小128M的话,那么将会返回所有行。
    
hive (yinzhengjie)> select * from stu_buck;
OK
stu_buck.id    stu_buck.name
1016    ss16
1012    ss12
1008    ss8
1004    ss4
1001    ss1
1013    ss13
1005    ss5
1009    ss9
1014    ss14
1010    ss10
1006    ss6
1002    ss2
1015    ss15
1007    ss7
1003    ss3
1011    ss11
Time taken: 0.078 seconds, Fetched: 16 row(s)
hive (yinzhengjie)> select * from stu_buck tablesample(0.1 percent) ;            #注意,stu_buck是一个4和桶的桶表,因此他不会把桶表的数据都查询出来,因为它是从四个桶中随机抽取的一个桶的数据
OK
stu_buck.id    stu_buck.name
1016    ss16
1012    ss12
1008    ss8
1004    ss4
Time taken: 0.04 seconds, Fetched: 4 row(s)
hive (yinzhengjie)> select * from stu tablesample(0.1 percent) ;
OK
stu.id    stu.name
1001    ss1
1002    ss2
1003    ss3
1004    ss4
1005    ss5
1006    ss6
1007    ss7
1008    ss8
1009    ss9
1010    ss10
1011    ss11
1012    ss12
1013    ss13
1014    ss14
1015    ss15
1016    ss16
Time taken: 0.059 seconds, Fetched: 16 row(s)
hive (yinzhengjie)> 
分桶表-数据块抽样(hive (yinzhengjie)> select * from stu_buck tablesample(0.1 percent);)

 5>.函数

    
hive (yinzhengjie)> show functions;                    #查看系统自带的函数
    
hive (yinzhengjie)> desc function xpath;            #显示自带的函数的用法
    
hive (yinzhengjie)> desc function extended xpath;    #详细显示自带的函数的用法


    关于自定义函数,可以参考:https://www.cnblogs.com/yinzhengjie/p/9154359.html

 

posted @ 2018-06-08 10:34  尹正杰  阅读(1340)  评论(0编辑  收藏  举报