Morley's Theorem
题解:
计算几何基本操作
注意叉积的时候字母写的顺序
代码:
#include <bits/stdc++.h> using namespace std; #define rint register int #define IL inline #define rep(i,h,t) for (int i=h;i<=t;i++) #define dep(i,t,h) for (int i=t;i>=h;i--) const double eps=1e-8; struct Point { double x,y; Point(double x1,double y1) {x=x1,y=y1;} Point(){}; Point operator +(const Point b) const { return Point(x+b.x,y+b.y); } Point operator -(const Point b) const { return Point(x-b.x,y-b.y); } double operator *(const Point b) const { return x*b.x+y*b.y; } double operator ^(const Point b) const { return x*b.y-y*b.x; } Point operator *(double k) { return Point(x*k,y*k); } Point operator /(double k) { return Point(x/k,y/k); } bool operator ==(Point b) { return b.x==x&&b.y==y?1:0; } }; struct Line { Point x,y; Line() {}; Line(Point x1,Point y1){x=x1,y=y1;}; }; double lenth(Point x) { return sqrt(x.x*x.x+x.y*x.y); } double angle(Point x,Point y) { return acos(x*y/lenth(x)/lenth(y)); } int dcmp(double x) { if (x<-eps) return(-1); else if (x>eps) return(1); else return(0); } Point rotate(Point x,double r) { return Point(x.x*cos(r)-x.y*sin(r),x.x*sin(r)+x.y*cos(r)); } Point gtp(Line x,Line y) { Point v1=x.y-x.x; Point v2=y.y-y.x; double k=((x.x^v1)-(y.x^v1))/(v2^v1); return y.x+v2*k; } double distance(Point x,Line y) { Point p1=x-y.x,p2=y.y-y.x; return fabs((p1^p2)/lenth(p2)); } Point get(Point a,Point b,Point c) { Point v1,v2; double r1=angle(a-b,c-b); v1=rotate(c-b,r1/3); v1=v1+b; double r2=angle(a-c,b-c); v2=rotate(b-c,-r2/3); v2=v2+c; return gtp(Line(b,v1),Line(c,v2)); } int main() { freopen("1.in","r",stdin); freopen("1.out","w",stdout); ios::sync_with_stdio(false); int T; cin>>T; while (T--) { int a1,a2,a3,b1,b2,b3; cin>>a1>>b1>>a2>>b2>>a3>>b3; Point p1,p2,p3,a,b,c; p1=Point(a1,b1); p2=Point(a2,b2); p3=Point(a3,b3); a=get(p1,p2,p3); b=get(p2,p3,p1); c=get(p3,p1,p2); printf("%.6lf %.6lf %.6lf %.6lf %.6lf %.6lf\n", a.x,a.y,b.x,b.y,c.x,c.y); } return 0; }