PAT甲级——1107 Social Clusters (并查集)
本文同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/90409731
When register on a social network, you are always asked to specify your hobbies in order to find some potential friends with the same hobbies. A social cluster is a set of people who have some of their hobbies in common. You are supposed to find all the clusters.
Input Specification:
Each input file contains one test case. For each test case, the first line contains a positive integer N (≤), the total number of people in a social network. Hence the people are numbered from 1 to N. Then N lines follow, each gives the hobby list of a person in the format:
Ki: hi[1] hi[2] ... hi[Ki]
where Ki (>) is the number of hobbies, and [ is the index of the j-th hobby, which is an integer in [1, 1000].
Output Specification:
For each case, print in one line the total number of clusters in the network. Then in the second line, print the numbers of people in the clusters in non-increasing order. The numbers must be separated by exactly one space, and there must be no extra space at the end of the line.
Sample Input:
8
3: 2 7 10
1: 4
2: 5 3
1: 4
1: 3
1: 4
4: 6 8 1 5
1: 4
Sample Output:
3
4 3 1
题目大意:将N个人按照兴趣爱好分类,爱好有交集的归为一个社交团体,求社交团体的个数,然后将团体里面的人数进行降序输出。
思路:在并查集的操作上稍作修改,用根节点的值进行人数的统计,以每一行的第一个爱好代号作为当前数据的root,将之后的X与root进行union操作,若S[rootX]不等于root且 ≤ 0,意味着当前团体已经有了 | S[rootX] | 人,将S[rootX]的值加到S[root]上再进行合并。注意每一行开头的K:需要用字符串数组处理来获取K的值。
1 #include <iostream> 2 #include <vector> 3 #include <cmath> 4 #include <algorithm> 5 #define MaxNum 1001 6 using namespace std; 7 vector <int> S(MaxNum, 0); 8 bool cmp(int a, int b) { 9 return a > b; 10 } 11 int getK(char *c); 12 void unionSet(int root, int X); 13 int find(int X); 14 int main() 15 { 16 int N, K; 17 scanf("%d", &N); 18 for (int i = 0; i < N; i++) { 19 int root, X; 20 char c[5]; 21 scanf("%s%d", c, &X); 22 K = getK(c); 23 root = find(X); 24 S[root]--;//人数+1用负数表示 25 for (int j = 1; j < K; j++) { 26 scanf("%d", &X); 27 unionSet(root, X); 28 } 29 } 30 vector <int> ans; 31 for (int i = 1; i < MaxNum; i++) { 32 if (S[i] < 0) 33 ans.push_back(abs(S[i])); 34 } 35 sort(ans.begin(), ans.end(), cmp); 36 printf("%d\n", ans.size()); 37 printf("%d", ans[0]); 38 for (int i = 1; i < ans.size(); i++) 39 printf(" %d", ans[i]); 40 printf("\n"); 41 return 0; 42 } 43 int getK(char *c) { 44 int sum = 0; 45 for (int i = 0; c[i] != ':'; i++) 46 sum = sum * 10 + c[i] - '0'; 47 return sum; 48 } 49 void unionSet(int root, int X) { 50 int rootX = find(X); 51 if(S[rootX] <=0 && rootX != root){ 52 S[root] += S[rootX]; 53 S[rootX] = root; 54 } 55 } 56 int find(int X) { 57 if (S[X] <= 0) 58 return X; 59 else 60 return S[X] = find(S[X]);//递归地压缩路径 61 }