Bridge模式也叫桥接模式,是由GoF提出的23种软件设计模式的一种。Bridge模式在调用方与被调用方之间使用一个起着“桥”作用的类,用来支持类的多方向扩展。
Bridge模式体现了两上面向对象的设计原则问题:
一、接口隔离原则 使用多个接口总比使用一个接口要好很多,(灵活)
二、合成/聚合原则 即尽量使用使用组合/聚合比而不要使用继承。
本文介绍设计模式中的桥接(Bridge)模式的概念,用法,以及实际应用中怎么样使用桥接模式进行开发。
- 存在相对并列的子类属性。
- 存在概念上的交叉。
- 可变性。
我们就可以用Bridge模式来对其进行抽象与具体,对相关类进行重构。
为 了容易理解,我们举例说明一下,比如汽车类(Car),假设有2个子类,卡车类(Truck)与公交车类(Bus),它们有[设置引擎]这个动作行为,通 过不同引擎规格的设置,可以将它们设置为比如为1500cc(Car1500),和2000cc(Car2000)的车。
这样,不管是1500cc的卡车还是2000cc的卡车,抑或是1500cc的公交车还是2000cc的公交车,它们都可以是汽车类的子类,而且:
- 存在相对并列的子类属性。汽车的种类,与汽车引擎规格是汽车的2个并列的属性,没有概念上的重复。
- 存在概念上的交叉。不管是卡车还是公交车,都有1500cc与2000cc引擎规格的车。
- 可变性。除了卡车,公交车之外,可能还有救火车;除了有1500cc与2000cc引擎规格的车之外,还可能有2500cc的车等等。
这样一来,我们怎么来设计汽车类呢?
1,方法一:通过继承设计所有可能存在的子类。可能我们会想到下面的这种继承关系:
汽车总类:Car
汽车子类 - 按种类分类:Bus,Truck
汽车子类 - 按引擎分类:Bus1500,Bus2000,Truck1500,Truck2000
这样设置引擎这个动作就由各个子类加以实现。
但如果以后需要增加一种救火车(FireCar),以及增加一个引擎规格2500cc,需要实现的子类将会有:
Bus1500,Bus2000,Bus2500,Truck1500,Truck2000,Truck2500,FireCar1500,FireCar2000,FireCar2500
多达9个。
也就是说,这种设计方法,子类数目将随几何级数增长。
而且,Bus1500,Truck1500的引擎规格相同,它们的引擎设置动作应该是一样的,但现在把它们分成不同的子类,难以避免执行重复的动作行为。
2,方法二:分别为Bus以及Truck实现设置不同引擎的方法
汽车总类:Car
汽车子类:Bus,Truck
然后在Bus类里分别提供1500cc以及2000cc引擎的设置方法:
Bus extends Car {
public setEngine1500cc();
public setEngine2000cc();
}
在Truck类里也分别提供1500cc以及2000cc引擎的设置方法:
Truck extends Car {
public setEngine1500cc();
public setEngine2000cc();
}
这种情况,子类的数量是被控制了。但一方面,如果每增加一种引擎规格,需要修改所有的汽车子类;另一方面,即使引擎的设置行为一样,但是不同的汽车子类却需要提供完全一样的方法。
在实际的应用开发中,以上2种方法都会造成迁一发而动全身,而且会存在大量的重复代码。
Bridge模式可以很好的解决这类问题。
我们先看看Bridge模式的类图描述:
[图:出自wikipedia.org]
Client
Bridge模式的使用者
Abstraction
抽象类接口(接口或抽象类)
维护对行为实现(Implementor)的引用
Refined Abstraction
Abstraction子类
Implementor
行为实现类接口 (Abstraction接口定义了基于Implementor接口的更高层次的操作)
ConcreteImplementor
Implementor子类
抽象 - Abstraction类:汽车类及其子类:
Car:汽车总类
Truck:汽车子类 - 卡车类。
Bus:汽车子类 - 公交车类。
行为实现 - Implementor:汽车引擎设置的行为类及子类
SetCarEngine:汽车引擎的设置接口
SetCarEngine1500cc:设置1500cc引擎
SetCarEngine2000cc:设置2000cc引擎
Client类:使用Bridge模式
Client:测试
代码:
执行Client,输出结果:
一、接口隔离原则 使用多个接口总比使用一个接口要好很多,(灵活)
二、合成/聚合原则 即尽量使用使用组合/聚合比而不要使用继承。
本文介绍设计模式中的桥接(Bridge)模式的概念,用法,以及实际应用中怎么样使用桥接模式进行开发。
Bridge模式的概念
Bridge模式是构造型的设计模式之一。Bridge模式基于接口的最小设计原则,通过使用封装,聚合以及继承等行为来让不同的类承担不同的责任。它的主 要特点是把抽象(abstraction)与行为实现(implementation)分离开来,从而可以保持各部分的独立性以及应对它们的功能扩展。Bridge模式的应用场景
面向对象的程序设计(OOP)里有类继承(子类继承父类)的概念,如果一个类或接口有多个具体实现子类,如果这些子类具有以下特性:- 存在相对并列的子类属性。
- 存在概念上的交叉。
- 可变性。
我们就可以用Bridge模式来对其进行抽象与具体,对相关类进行重构。
为 了容易理解,我们举例说明一下,比如汽车类(Car),假设有2个子类,卡车类(Truck)与公交车类(Bus),它们有[设置引擎]这个动作行为,通 过不同引擎规格的设置,可以将它们设置为比如为1500cc(Car1500),和2000cc(Car2000)的车。
这样,不管是1500cc的卡车还是2000cc的卡车,抑或是1500cc的公交车还是2000cc的公交车,它们都可以是汽车类的子类,而且:
- 存在相对并列的子类属性。汽车的种类,与汽车引擎规格是汽车的2个并列的属性,没有概念上的重复。
- 存在概念上的交叉。不管是卡车还是公交车,都有1500cc与2000cc引擎规格的车。
- 可变性。除了卡车,公交车之外,可能还有救火车;除了有1500cc与2000cc引擎规格的车之外,还可能有2500cc的车等等。
这样一来,我们怎么来设计汽车类呢?
1,方法一:通过继承设计所有可能存在的子类。可能我们会想到下面的这种继承关系:
汽车总类:Car
汽车子类 - 按种类分类:Bus,Truck
汽车子类 - 按引擎分类:Bus1500,Bus2000,Truck1500,Truck2000
这样设置引擎这个动作就由各个子类加以实现。
但如果以后需要增加一种救火车(FireCar),以及增加一个引擎规格2500cc,需要实现的子类将会有:
Bus1500,Bus2000,Bus2500,Truck1500,Truck2000,Truck2500,FireCar1500,FireCar2000,FireCar2500
多达9个。
也就是说,这种设计方法,子类数目将随几何级数增长。
而且,Bus1500,Truck1500的引擎规格相同,它们的引擎设置动作应该是一样的,但现在把它们分成不同的子类,难以避免执行重复的动作行为。
2,方法二:分别为Bus以及Truck实现设置不同引擎的方法
汽车总类:Car
汽车子类:Bus,Truck
然后在Bus类里分别提供1500cc以及2000cc引擎的设置方法:
Bus extends Car {
public setEngine1500cc();
public setEngine2000cc();
}
在Truck类里也分别提供1500cc以及2000cc引擎的设置方法:
Truck extends Car {
public setEngine1500cc();
public setEngine2000cc();
}
这种情况,子类的数量是被控制了。但一方面,如果每增加一种引擎规格,需要修改所有的汽车子类;另一方面,即使引擎的设置行为一样,但是不同的汽车子类却需要提供完全一样的方法。
在实际的应用开发中,以上2种方法都会造成迁一发而动全身,而且会存在大量的重复代码。
Bridge模式可以很好的解决这类问题。
我们先看看Bridge模式的类图描述:
[图:出自wikipedia.org]
Client
Bridge模式的使用者
Abstraction
抽象类接口(接口或抽象类)
维护对行为实现(Implementor)的引用
Refined Abstraction
Abstraction子类
Implementor
行为实现类接口 (Abstraction接口定义了基于Implementor接口的更高层次的操作)
ConcreteImplementor
Implementor子类
Bridge模式的应用范例
我们来看看怎么应用Bridge模式来设计汽车类。抽象 - Abstraction类:汽车类及其子类:
Car:汽车总类
Truck:汽车子类 - 卡车类。
Bus:汽车子类 - 公交车类。
行为实现 - Implementor:汽车引擎设置的行为类及子类
SetCarEngine:汽车引擎的设置接口
SetCarEngine1500cc:设置1500cc引擎
SetCarEngine2000cc:设置2000cc引擎
Client类:使用Bridge模式
Client:测试
代码:
- //测试
- public class Client {
- public static void main(String[] args) {
- SetCarEngine carEngine1500cc = new SetCarEngine1500cc();
- SetCarEngine carEngine2000cc = new SetCarEngine2000cc();
- Car truck1500cc = new Truck(carEngine1500cc);
- Car truck2000cc = new Truck(carEngine2000cc);
- truck1500cc.setEngine();
- truck2000cc.setEngine();
- Car bus1500cc = new Bus(carEngine1500cc);
- Car bus2000cc = new Bus(carEngine2000cc);
- bus1500cc.setEngine();
- bus2000cc.setEngine();
- }
- }
- /** "Abstraction" */
- //汽车类的抽象
- abstract class Car {
- SetCarEngine setCarEngine;
- public abstract void setEngine();
- }
- /** Refined Abstraction */
- //Abstraction子类:这里为汽车抽象类的子类
- class Truck extends Car {
- public Truck(SetCarEngine setCarEngine) {
- this.setCarEngine = setCarEngine;
- }
- public void setEngine() {
- System.out.print("Set Truck Engine: ");
- setCarEngine.setEngine();
- }
- }
- class Bus extends Car {
- public Bus(SetCarEngine setCarEngine) {
- this.setCarEngine = setCarEngine;
- }
- public void setEngine() {
- System.out.print("Set Bus Engine: ");
- setCarEngine.setEngine();
- }
- }
- /** "Implementor" */
- //汽车类的行为实现
- interface SetCarEngine {
- public void setEngine();
- }
- /** ConcreteImplementor */
- //行为实现子类
- class SetCarEngine1500cc implements SetCarEngine {
- public void setEngine() {
- System.out.println("1500cc");
- }
- }
- class SetCarEngine2000cc implements SetCarEngine {
- public void setEngine() {
- System.out.println("2000cc");
- }
- }
执行Client,输出结果:
C:\Bridge>javac *.java
C:\Bridge>java Client
Set Truck Engine: 1500cc
Set Truck Engine: 2000cc
Set Bus Engine: 1500cc
Set Bus Engine: 2000cc
C:\Bridge>java Client
Set Truck Engine: 1500cc
Set Truck Engine: 2000cc
Set Bus Engine: 1500cc
Set Bus Engine: 2000cc