连续子数组的最大的和
HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。你会不会被他忽悠住?
思路:先一直求和,和最大值比较,并赋予最大值。若最大值开始减小,则当最大值减小到0时,重新将求和值赋为0。(因为从此时之前的数字不可能有最大值。需要重新求和)
public int FindGreatestSumOfSubArray(int[] array) { if(array.length == 0) return 0; //异常情况 int max = array[0]; //不能赋为0,有可能为负值 int sum = 0; for(int i=0;i<array.length;i++){ sum+=array[i]; if(sum>max){ max = sum; } if(sum <= 0){ sum = 0; } } return max; }