Testing Round #12 C

Description

For the given sequence with n different elements find the number of increasing subsequences with k + 1 elements. It is guaranteed that the answer is not greater than 8·1018.

Input

First line contain two integer values n and k (1 ≤ n ≤ 105, 0 ≤ k ≤ 10) — the length of sequence and the number of elements in increasing subsequences.

Next n lines contains one integer ai (1 ≤ ai≤ n) each — elements of sequence. All values ai are different.

Output

Print one integer — the answer to the problem.

Examples
input
5 2
1
2
3
5
4
output
7
题意:求长度为k+1的上升子序列有多少个
解法:sum=dp[0][k+1]+dp[1][k+1]+dp[2][k+1]+....dp[n][k+1]
dp[x][y]是x为上升子序列最后一个元素,长度为y的个数
用树状数组维护,更新的是num为上升子序列最后一个元素,长度为j时,加上num为上升子序列最后一个元素,长度为j-1时个数
最后求sum(n,m+1)总和
 1 #include <bits/stdc++.h>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            .h>
 2 using namespace std;
 3 #define ll long long
 4 ll n,m;
 5 ll dp[200000][20];
 6 ll bit(ll x)
 7 {
 8     return x&(-x);
 9 }
10 void up(ll x,ll y,ll ans)
11 {
12     while(x<200000)
13     {
14         dp[x][y]+=ans;
15         x+=bit(x);
16     }
17 }
18 ll sum(ll x,ll y)
19 {
20     ll ans=0;
21     while(x>0)
22     {
23         ans+=dp[x][y];
24         x-=bit(x);
25     }
26     return ans;
27 }
28 int main()
29 {
30     cin>>n>>m;
31     up(1,0,1);
32     for(int i=1;i<=n;i++)
33     {
34         ll num;
35         cin>>num;
36         for(int j=m+1;j>=1;j--)
37         {
38             up(num,j,sum(num,j-1));
39         }
40     }
41     cout<<sum(n,m+1)<<endl;
42     return 0;
43 }

 

posted @ 2017-03-19 20:45  樱花落舞  阅读(123)  评论(0编辑  收藏  举报