整数划分问题之递归法

整数划分问题是算法中的一个经典命题之一,有关这个问题的讲述在讲解到递归时基本都将涉及。所谓整数划分,是指把一个正整数n写成如下形式:

    n=m1+m2+...+mi; (其中mi为正整数,并且1 <= mi <= n),则{m1,m2,...,mi}为n的一个划分。

如果{m1,m2,...,mi}中的最大值不超过m,即max(m1,m2,...,mi)<=m,则称它属于n的一个m划分。这里我们记n的m划分的个数为f(n,m);

例如但n=4时,他有5个划分,{4},{3,1},{2,2},{2,1,1},{1,1,1,1};

注意4=1+3 和 4=3+1被认为是同一个划分。

该问题是求出n的所有划分个数,即f(n, n)。下面我们考虑求f(n,m)的方法;

分析:

我们可以分为四种:

1. m=1 or n=1

只有一种划分情况,就是n个1相加, 所以f(n,m)=1;

2. m=n>1

f(n,m)=f(n,n-1)+1  加上的1代表n+0=n这个划分方案

3.n<m

f(n,m)=f(n,n) 逻辑上不存在m>n这种情况

4.n>m

f(n,m)=f(n,m-1)+f(n-m,m)

f(n,m-1)表示划分方案中没有m的情况

f(n-m,m)表示划分方案中有m的情况

下面我们来看一个例子,可以更好的理解哦

整数4 最大加数 3
1+3=4
1+1+2=4
2+2=4
1+1+1+1=4
一共4种划分方案

分析:

没有m的情况:

1+1+2=4
2+2=4
1+1+1+1=4

符合f(n,m-1)

有m的情况:

1+3=4

符合f(n-m,m)

代码如下:

/*
整数划分问题
:将一个整数划分为若干个数相加
例子:
整数4 最大加数 4
4=4
1+3=4
1+1+2=4
2+2=4
1+1+1+1=4
一共五种划分方案
注意:1+3=4,3+1=4被认为是同一种划分方案
*/

#include<stdio.h>
int q(int n,int m)//n表示需要划分的数字,m表示最大的家数不超过m
{
    if(m==1||n==1)//只要存在一个为1,那么划分的方法数肯定只有一种,那就是n个1相加
    {
        return 1;
    }else if(n==m&&n>1)//二者相等且大于1的时候,问题等价于:q(n,n-1)+1;意味着将最大加数减一之后n的划分数,然后加一,最后面那个一代表的是:0+n,这个划分的方案
    {
        return q(n,n-1)+1;
    }else if(n<m)//如果m>n,那么令m=n就ok,因为最大加数在逻辑上不可能超过n
    {
        return q(n,n);
    }else if(n>m)
    {
        return q(n,m-1)+q(n-m,m);//分为两种:划分方案没有m的情况+划分方案有m的情况
    }
    return 0;
}
int main()
{
    printf("请输入需要划分的数字和最大家数:\n");
    int n,m;
    scanf("%d %d",&n,&m);
    int r=q(n,m);
    printf("%d\n",r);
    return 0;
}

技术在于分享

 

posted @ 2018-03-29 20:26  西*风  阅读(1785)  评论(0编辑  收藏  举报