spark算子

1.map

一条一条读取

def map(): Unit ={
    val list = List("张无忌", "赵敏", "周芷若")
    val listRDD = sc.parallelize(list)
    val nameRDD = listRDD.map(name => "Hello " + name)
    nameRDD.foreach(name => println(name))
  }

 

2.flatMap

扁平化

def flatMap(): Unit ={
    val list = List("张无忌 赵敏","宋青书 周芷若")
    val listRDD = sc.parallelize(list)

    val nameRDD = listRDD.flatMap(line => line.split(" ")).map(name => "Hello " + name)
    nameRDD.foreach(name => println(name))
  }

3.mapPartitions

一次读取一个分区数据

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession

import scala.collection.mutable.ListBuffer

object Demo {
  val conf = new SparkConf().setAppName("Demo").setMaster("local");
  //  val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
  val spark = new SparkContext(conf)

  def main(args: Array[String]): Unit = {
    val list = List(1, 2, 3, 4, 5, 6)
    val rdd = spark.parallelize(list, 2)
    rdd.foreach(println)
    val rdd2 = rdd.mapPartitions(iterator => {
      val newList = new ListBuffer[String]
      while (iterator.hasNext) {
        newList.append("hello" + iterator.next())
      }
      newList.toIterator
    })

    rdd2.foreach(name => println(name))
  }

}

4.mapPartitionsWithIndex

一次读取一个分区数据,并且知道是哪个分区的

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession

import scala.collection.mutable.ListBuffer

object Demo {
  val conf = new SparkConf().setAppName("Demo").setMaster("local");
  //  val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
  val spark = new SparkContext(conf)

  def main(args: Array[String]): Unit = {
    val list = List(1, 2, 3, 4, 5, 6)
    val rdd = spark.parallelize(list, 2)
    val rdd2 = rdd.mapPartitionsWithIndex((index, iterator) => {
      val newList = new ListBuffer[String]
      while (iterator.hasNext) {
        newList.append(index + "_" + iterator.next())
      }
      newList.toIterator
    })

    rdd2.foreach(name => println(name))
  }

}

5.reduce

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession

import scala.collection.mutable.ListBuffer

object Demo {
  val conf = new SparkConf().setAppName("Demo").setMaster("local");
  //  val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
  val spark = new SparkContext(conf)

  def main(args: Array[String]): Unit = {
    val list = List(1, 2, 3, 4, 5, 6)
    val rdd = spark.parallelize(list)
    val result = rdd.reduce((x, y) => x + y)
    println(result)
  }

}

 

6.reduceBykey

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession

import scala.collection.mutable.ListBuffer

object Demo {
  val conf = new SparkConf().setAppName("Demo").setMaster("local");
  //  val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
  val spark = new SparkContext(conf)

  def main(args: Array[String]): Unit = {
    val list = List(("武当", 99), ("少林", 97), ("武当", 89), ("少林", 77))
    val rdd = spark.parallelize(list)
    val rdd2 = rdd.reduceByKey(_ + _)
    rdd2.foreach(tuple => println(tuple._1 + ":" + tuple._2))
  }
}

7.union

合并,但不去重

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession

import scala.collection.mutable.ListBuffer

object Demo {
  val conf = new SparkConf().setAppName("Demo").setMaster("local");
  //  val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
  val spark = new SparkContext(conf)

  def main(args: Array[String]): Unit = {
    val list1 = List(1,2,3,4)
    val list2 = List(3,4,5,6)
    val rdd1 = spark.parallelize(list1)
    val rdd2 = spark.parallelize(list2)
    rdd1.union(rdd2).foreach(println)
  }
}

 

8.join

 

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession

import scala.collection.mutable.ListBuffer

object Demo {
  val conf = new SparkConf().setAppName("Demo").setMaster("local");
  //  val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
  val spark = new SparkContext(conf)

  def main(args: Array[String]): Unit = {
    val list1 = List((1, "东方不败"), (2, "令狐冲"), (3, "林平之"))
    val list2 = List((1, 99), (2, 98), (3, 97))
    val rdd1 = spark.parallelize(list1)
    val rdd2 = spark.parallelize(list2)
    val rdd3 = rdd1.join(rdd2)
    rdd3.foreach(tuple => {
      val id = tuple._1
      val new_tuple = tuple._2
      val name = new_tuple._1
      val score = new_tuple._2
      println("学号:" + id + " 姓名:" + name + " 成绩:" + score)
    })
  }
}

 

9.groupbyKey

 

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession

import scala.collection.mutable.ListBuffer

object Demo {
  val conf = new SparkConf().setAppName("Demo").setMaster("local");
  //  val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
  val spark = new SparkContext(conf)

  def main(args: Array[String]): Unit = {
    val list = List(("武当", "张三丰"), ("峨眉", "灭绝师太"), ("武当", "宋青书"), ("峨眉", "周芷若"))
    val rdd1 = spark.parallelize(list)
    val rdd2 = rdd1.groupByKey()
    rdd2.foreach(t => {
      val menpai = t._1
      val iterator = t._2.iterator
      var people = ""
      while (iterator.hasNext) people = people + iterator.next + " "
      println("门派:" + menpai + "人员:" + people)
    })
  }
}

10.cartesian

笛卡尔积

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession

import scala.collection.mutable.ListBuffer

object Demo {
  val conf = new SparkConf().setAppName("Demo").setMaster("local");
  //  val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
  val spark = new SparkContext(conf)

  def main(args: Array[String]): Unit = {
    val list1 = List("A", "B")
    val list2 = List(1, 2, 3)
    val list1RDD = spark.parallelize(list1)
    val list2RDD = spark.parallelize(list2)
    list1RDD.cartesian(list2RDD).foreach(t => println(t._1 + "->" + t._2))
  }
}

 

 11.filter

 

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession

import scala.collection.mutable.ListBuffer

object Demo {
  val conf = new SparkConf().setAppName("Demo").setMaster("local");
  //  val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
  val spark = new SparkContext(conf)

  def main(args: Array[String]): Unit = {
    val list = List(1,2,3,4,5,6,7,8,9,10)
    val listRDD = spark.parallelize(list)
    listRDD.filter(num => num % 2 ==0).foreach(print(_))
  }
}

12.distinct

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession

import scala.collection.mutable.ListBuffer

object Demo {
  val conf = new SparkConf().setAppName("Demo").setMaster("local");
  //  val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
  val spark = new SparkContext(conf)

  def main(args: Array[String]): Unit = {
    val list = List(1,1,2,2,3,3,4,5)
    val rdd = spark.parallelize(list)
    rdd.distinct().foreach(println)
  }
}

13.intersection

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession

import scala.collection.mutable.ListBuffer

object Demo {
  val conf = new SparkConf().setAppName("Demo").setMaster("local");
  //  val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
  val spark = new SparkContext(conf)

  def main(args: Array[String]): Unit = {
    val list1 = List(1,2,3,4)
    val list2 = List(3,4,5,6)
    val list1RDD = spark.parallelize(list1)
    val list2RDD = spark.parallelize(list2)
    list1RDD.intersection(list2RDD).foreach(println(_))
  }
}

14.coalesce

分区有多-->少

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession

import scala.collection.mutable.ListBuffer

object Demo {
  val conf = new SparkConf().setAppName("Demo").setMaster("local");
  //  val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
  val spark = new SparkContext(conf)

  def main(args: Array[String]): Unit = {
    val list = List(1,2,3,4,5)
    spark.parallelize(list,3).coalesce(1).foreach(println(_))
  }
}

15.repartition

进行重分区

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession

import scala.collection.mutable.ListBuffer

object Demo {
  val conf = new SparkConf().setAppName("Demo").setMaster("local");
  //  val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
  val spark = new SparkContext(conf)

  def main(args: Array[String]): Unit = {
    val list = List(1,2,3,4)
    val listRDD = spark.parallelize(list,1)
    listRDD.repartition(2).foreach(println(_))
  }
}

16.repartitionAndSortWithinPartitions

在给定的partitioner内部进行排序,性能比repartition要高。

import org.apache.spark.{HashPartitioner, SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession

import scala.collection.mutable.ListBuffer

object Demo {
  val conf = new SparkConf().setAppName("Demo").setMaster("local");
  //  val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
  val spark = new SparkContext(conf)

  def main(args: Array[String]): Unit = {
    val list = List(1, 4, 55, 66, 33, 48, 23)
    val listRDD = spark.parallelize(list, 1)
    listRDD.map(num => (num, num))
      .repartitionAndSortWithinPartitions(new HashPartitioner(2))
      .mapPartitionsWithIndex((index, iterator) => {
        val listBuffer: ListBuffer[String] = new ListBuffer
        while (iterator.hasNext) {
          listBuffer.append(index + "_" + iterator.next())
        }
        listBuffer.iterator
      }, false)
      .foreach(println(_))
  }
}

17.cogroup

import org.apache.spark.{HashPartitioner, SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession

import scala.collection.mutable.ListBuffer

object Demo {
  val conf = new SparkConf().setAppName("Demo").setMaster("local");
  //  val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
  val spark = new SparkContext(conf)

  def main(args: Array[String]): Unit = {
    val list1 = List((1, "www"), (2, "bbs"))
    val list2 = List((1, "cnblog"), (2, "cnblog"), (3, "very"))
    val list3 = List((1, "com"), (2, "com"), (3, "good"))

    val list1RDD = spark.parallelize(list1)
    val list2RDD = spark.parallelize(list2)
    val list3RDD = spark.parallelize(list3)

    list1RDD.cogroup(list2RDD,list3RDD).foreach(tuple =>
      println(tuple._1 + " " + tuple._2._1 + " " + tuple._2._2 + " " + tuple._2._3))
  }
}

18.sortByKey

import org.apache.spark.{HashPartitioner, SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession

import scala.collection.mutable.ListBuffer

object Demo {
  val conf = new SparkConf().setAppName("Demo").setMaster("local");
  //  val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
  val spark = new SparkContext(conf)

  def main(args: Array[String]): Unit = {
    val list = List((99, "张三丰"), (96, "东方不败"), (66, "林平之"), (98, "聂风"))
    spark.parallelize(list).sortByKey(false).foreach(tuple => println(tuple._2 + "->" + tuple._1))
  }
}

 

19.aggregateByKey

import org.apache.spark.{HashPartitioner, SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession

import scala.collection.mutable.ListBuffer

object Demo {
  val conf = new SparkConf().setAppName("Demo").setMaster("local");
  //  val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
  val spark = new SparkContext(conf)

  def main(args: Array[String]): Unit = {
    val list = List("you,jump", "i,jump")
    spark.parallelize(list)
      .flatMap(_.split(","))
      .map((_, 1))
      .aggregateByKey(0)(_ + _, _ + _)
      .foreach(tuple => println(tuple._1 + "->" + tuple._2))
  }
}
apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession

import scala.collection.mutable.ListBuffer

object Demo {
val conf = new SparkConf().setAppName("Demo").setMaster("local");
// val spark = SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
val spark = new SparkContext(conf)

def main(args: Array[String]): Unit = {
val list = List(("武当", "张三丰"), ("峨眉", "灭绝师太"), ("武当", "宋青书"), ("峨眉", "周芷若"))
val rdd1 = spark.parallelize(list)
val rdd2 = rdd1.groupByKey()
rdd2.foreach(t => {
val menpai = t._1
val iterator = t._2.iterator
var people = ""
while (iterator.hasNext) people = people + iterator.next + " "
println("门派:" + menpai + "人员:" + people)
})
}
}
posted @ 2019-04-29 18:47  问题不大1  阅读(251)  评论(0编辑  收藏  举报