PN结原理和对三极管反向偏置能导通的思考
前言
最近看完PN结和三极管的科普视频,有一件事没想通。对于NPN型三极管,工作在放大状态时,发射结正偏,集电结反偏。那么问题来了,集电结反偏时,为什么还会产生集电结->发射结的电流?
为了搞清楚这个问题,在网上查了一些资料,并综合自己的理解写下了这篇博客,以备自己以后查阅,同时分享给有同样疑问的人,如果有理解不到位的地方,欢迎指正。
本征半导体
本征半导体(intrinsic semiconductor)是完全不含杂质且无晶格缺陷的纯净半导体称为本征半导体。主要常见代表有硅、锗这两种元素的单晶体结构。
硅原子最外层有4个电子,为了达到最外层8个电子的稳定结构,每个硅原子与相邻的硅原子共享它们最外层的4个电子,组成共价键。处于稳定结构的原子不可自由移动。
本征激发
一般来说,半导体中的价电子不完全像绝缘体中价电子所受束缚那样强,如果能从外界获得一定的能量(如光照、温升、电磁场激发等),一些价电子就可能挣脱共价键的束缚而成为近似自由的电子(同时产生出一个空穴),这就是本征激发。这是一种热学本征激发,所需要的平均能量就是禁带宽度。
本征激发还有其它一些形式。如果是光照使得价电子获得足够的能量、挣脱共价键而成为自由电子,这是光学本征激发(竖直跃迁);这种本征激发所需要的平均能量要大于热学本征激发的能量——禁带宽度。如果是电场加速作用使得价电子受到高能量电子的碰撞、发生电离而成为自由电子,这是碰撞电离本征激发;这种本征激发所需要的平均能量大约为禁带宽度的1.5倍。
价电子通过本征激发成为一个自由电子后形成一个带正电的空位,称为空穴(hole),导带中的电子和价带中的空穴合称为电子-空穴对。上述产生的电子和空穴均能自由移动,成为自由载流子(free carrier),它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。在本征半导体中,这两种载流子的浓度是相等的。随着温度的升高,其浓度基本上是按指数规律增长的。
复合
导带中的电子会落入空穴,使电子-空穴对消失,称为复合(recombination)。复合时产生的能量以电磁辐射(发射光子photon)或晶格热振动(发射声子phonon)的形式释放。在一定温度下,电子-空穴对的产生和复合同时存在并达到动态平衡,此时本征半导体具有一定的载流子浓度,从而具有一定的电导率。加热或光照会使半导体发生热激发或光激发,从而产生更多的电子-空穴对,这时载流子浓度增加,电导率增加。半导体热敏电阻和光敏电阻等半导体器件就是根据此原理制成的。常温下本征半导体的电导率较小,载流子浓度对温度变化敏感,所以很难对半导体特性进行控制,因此实际应用不多。
杂质半导体
在本征半导体中掺入某些微量的杂质,就会使半导体的导电性能发生显著变化。其原因是掺杂半导体的某种载流子浓度大大增加。使自由电子浓度大大增加的杂质半导体称为N型半导体(电子半导体),使空穴浓度大大增加的杂质半导体称为P型半导体(空穴半导体)。
N型半导体
在硅或锗晶体中掺入少量的五价元素磷(或锑),晶体点阵中的某些半导体原子被杂质取代,磷原子的最外层有五个价电子,其中四个与相邻的半导体原子形成共价键,必定多出一个电子,这个电子几乎不受束缚,很容易被激发而成为自由电子,这样磷原子就成了不能移动的带正电的离子。每个磷原子给出一个电子,称为施主原子。
在N型半导体中,自由电子的浓度远大于空穴的浓度,因此自由电子称为多数载流子(简称多子),而其中空穴称为少数载流子(简称少子)。N型半导体主要靠自由电子导电,掺入的杂质越多,自由电子的浓度就越高,导电性能也就越强。
P型半导体
在硅或锗晶体中掺入少量的三价元素,如硼(或铟),晶体点阵中的某些半导体原子被杂质取代,硼原子的最外层有三个价电子,与相邻的半导体原子形成共价键时,产生一个空穴。这个空穴可能吸引束缚电子来填补,使得硼原子成为不能移动的带负电的离子。由于硼原子接受电子,所以称为受主原子。
在P型半导体中,空穴的浓度远大于自由电子的浓度,因此空穴称为多数载流子(简称多子),而其中自由电子称为少数载流子(简称少子)。P型半导体主要靠空穴导电,掺入的杂质越多,空穴的浓度就越高,导电性能也就越强。
在杂质半导体中,多数载流子的浓度由掺入的杂质浓度决定;少数载流子的浓度主要取决于温度的影响。对于杂质半导体来说,无论是N型还是P型半导体,从总体上看,仍然保持着电中性。
PN结
上一节说到杂质半导体分为N型半导体和P型半导体,它们的成分如下:
N型半导体包含:自由电子(属于多子,少数由本征激发而来,多数由磷原子提供)、空穴(属于少子,由本征激发而来)、带正电的阳离子(不能移动,磷原子失去一个电子后形成),自由电子数量 = 空穴数量 + 阳离子数量,整体呈现电中性。
P型半导体包含:自由电子(属于少子,由本征激发而来)、空穴(属于多子,少数由本征激发而来,多数由硼原子提供)、带负电的阴离子(不能移动,硼原子空穴得到一个电子后形成),自由电子数量 + 阴离子数量 = 空穴数量,整体呈现电中性。
PN结的形成
PN结是由一个N型半导体和一个P型半导体紧密接触所构成的,其接触界面称为冶金结界面。
在一块完整的硅片上,用不同的掺杂工艺使其一边形成N型半导体,另一边形成P型半导体,我们称两种半导体的交界面附近的区域为PN结。
在P型半导体和N型半导体结合后,由于交界处出现自由电子和空穴浓度差的原因,有一些电子从N型区向P型区扩散,也有一些空穴要从P型区向N型区扩散。电子和空穴相向扩散时相遇,从而进行复合,电子-空穴对消失。
它们扩散的结果就使P区一边失去空穴,留下了带负电的杂质离子,N区一边失去电子,留下了带正电的杂质离子。这些不能移动的带电粒子在P和N区交界面附近,形成了一个空间电荷区。
在空间电荷区形成后,由于正负电荷之间的相互作用,在空间电荷区形成了内电场,其方向是从带正电的N区指向带负电的P区。显然,这个电场的方向与载流子扩散运动的方向相反,阻止多子扩散。
另一方面,这个电场将使N区的少数载流子空穴向P区漂移,使P区的少数载流子电子向N区漂移,漂移运动的方向正好与扩散运动的方向相反。从N区漂移到P区的空穴补充了原来交界面上P区所失去的空穴,从P区漂移到N区的电子补充了原来交界面上N区所失去的电子,这就使空间电荷减少,内电场减弱。因此,漂移运动的结果是使空间电荷区变窄,扩散运动加强。
最后,多子的扩散和少子的漂移达到动态平衡。在P型半导体和N型半导体的结合面两侧,留下离子薄层,这个离子薄层形成的空间电荷区称为PN结。PN结的内电场方向由N区指向P区。在空间电荷区,由于缺少多子,所以也称耗尽层。
PN结的正向偏置
PN结P极接正,N极接负,这就是所谓的正向偏置,很显然正向偏置时外电场与内电场方向相反,正向偏置将加强多子的扩散运动,阻止少子的漂移运动。
PN结的反向偏置
PN结P极接负,N极接正,这就是所谓的反向偏置,反向偏置时外电场与内电场方向相同,反向偏置将加强少子的漂移运动,阻止多子的扩散运动。
二极管
二极管就是由一个PN结组成,正向偏置时多子参与导电,所以电流很大;反向偏置时少子参与导电,所以电流很小(漏电流)。
三极管
三极管由两个背靠背的PN结组成,可以是NPN组合,也可以是PNP组合。三极管有三个区:
集电区C:集电区与发射区为同一性质的掺杂半导体,但集电区的掺杂浓度要低,面积要大,便于收集电子。
基区B:基区尺度很薄:3~30μm,掺杂浓度低。
发射区E:发射区高掺杂,为了便于发射结发射电子,发射区半导体掺浓度高于基区的掺杂浓度,且发射结的面积较小。
三极管有三种工作状态:
截止状态
放大状态
饱和导通
三极管的放大状态
以NPN型三极管为例,当发射结正向偏置并导通,集电结反向偏置时,三极管工作于放大状态,发射极电流Ie=基极电流Ib + 集电极电流Ic。
结论
前面铺垫了那么多,终于进入今天的主题了,三极管处于放大状态时,发射结处于正向偏置,这时候发射结导通,产生基极到发射极的电流Ib,这一步没问题,正向偏置导通是PN结的特性。那么集电结反向偏置时,为什么还会有大量电流通过呢?这不是有违PN结特性吗?
个人理解是这样的:发射结正偏时,由多子扩散运动参与导电,大量E区的电子(多子)扩散进入B区,进入B区的电子一小部分流过B极产生电流Ib。
此时由于集电结为反偏,集电结外部电场与内部电场一致,并且由集电区C指向基区B,强大的电场将进入B区的电子吸引进集电区C,从而形成电流Ic。
所以对于二极管和三极管来说,同样是反向偏置,二极管不能导通,三极管集电结却可以导通的原因就是二极管P区只有少量的电子可以飘移到N区,从而形成漏电流;三极管基区(NPN的P型半导体)却被注入了大量的电子,这些电子飘移到集电区(NPN的N型半导体)从而形成大电流Ic。
原文链接:https://blog.csdn.net/dragonbody/article/details/103247626