CF 585 E Present for Vitalik the Philatelist
CF 585 E Present for Vitalik the Philatelist
我们假设 $ f(x) $ 表示与 $ x $ 互质的数的个数,$ s(x) $ 为 gcd 为 $ x $ 的集合的个数。
那么显然答案就是
\[\sum_{i > 1} f(i)s(i)
\]
所以我们现在考虑怎么求 $ f $ 和 $ s $ 。
先考虑 $ f $ ,
\[f(x) = \sum_{i} [gcd(i,x) = 1] c_i\\f(x) = \sum_{i} c_i \sum_{d|gcd(i,x)} \mu(d)\\f(x) = \sum_{d | x} \mu(d) \sum_{d|i} c_i
\]
我们设 $ t(x) = \sum_{x|i} c_i $ ,不难发现这就是我的 这篇博客 里面的第二种卷积,可以筛出来。
那么
\[f(x) = \sum_{d|x} \mu(d) t(d)
\]
然后又可以用第一种卷积来做,于是我们就跑出了 $ f $ 。
现在考虑怎么求 $ s $ ,我们可以假设 $ s'(x) $ 就是 gcd 为 $ x $ 的倍数的所有集合的个数。我们需要算出 $ x $ 的倍数的数字个数,就是 $ \sum_{x|i} c_i $ ,这个不就是前面的 $ t(x) $ 吗!
所以显然有
\[s'(x) = 2^{t(x)} - 1
\]
同时我们知道
\[s'(x) = \sum_{x|d} s(d)
\]
这个东西就是第二个卷积的反过来的形式,也就是第四种卷积!
所以我们可以三次 $ O(w\log\log w) $ 跑过去啦。
开始看错 $ w $ 大小了。。MLE了两发。。
#include "iostream"
#include "algorithm"
#include "cstring"
#include "cstdio"
#include "queue"
using namespace std;
#define MAXN 10000006
#define P 1000000007
int n;
int A[500006] , c[MAXN] , _[500006] , mu[MAXN] , s[MAXN];
int pri[MAXN] , en , lim;
void sieve( int x ) {
pri[0] = 1; mu[1] = 1;
for( int i = 2 ; i <= x ; ++ i ) {
if( !pri[i] ) pri[++ en] = i , mu[i] = -1;
for( int j = 1 ; i * pri[j] <= x && j <= en ; ++ j ) {
pri[i * pri[j]] = 1;
if( i % pri[j] == 0 ) { mu[i * pri[j]] = 0; break; }
mu[i * pri[j]] = -mu[i];
}
}
}
signed main() {
// freopen("in","r",stdin);
cin >> n;
for( int i = 1 ; i <= n ; ++ i ) scanf("%d",&A[i]) , ++ c[A[i]] , lim = max( lim , A[i] );
sieve( lim );
for( int i = 1 ; i <= en ; ++ i )
for( int j = lim / pri[i] ; j ; -- j )
c[j] += c[j * pri[i]];
for( int i = 1 ; i <= lim ; ++ i ) mu[i] *= c[i];
for( int i = 1 ; i <= en ; ++ i )
for( int j = 1 ; j * pri[i] <= lim ; ++ j )
( mu[j * pri[i]] += mu[j] ) %= P;
_[0] = 1;for( int i = 1 ; i < 500006 ; ++ i ) _[i] = _[i - 1] * 2 % P;
for( int i = 1 ; i <= lim ; ++ i ) s[i] = _[c[i]] - 1;
for( int i = en ; i ; -- i )
for( int j = 1 ; j * pri[i] <= lim ; ++ j )
( s[j] -= s[j * pri[i]] ) %= P;
int ans = 0;
for( int i = 2 ; i <= lim ; ++ i ) ( ans += 1ll * s[i] * mu[i] % P ) %= P;
cout << ( ans + P ) % P << endl;
}