ISSCC 2017论文导读 Session 14:ENVISION: A 0.26-to-10 TOPS/W Subword-Parallel DVAFS CNN Processor in 28nm

ENVISION: A 0.26-to-10 TOPS/W Subword-Parallel Dynamic-Voltage-Accuracy-Frequency-Scalable CNN Processor in 28nm FDSOI

单位:EAST-MICAS, KU Leuven(鲁汶大学)

本文是我觉得本次ISSCC2017 session 14中最好的一篇,给人的启示有很多,比如一款SOC可以在非常大的能效范围内调节;比如DL加速需要多少组成部件以及有几种数据复用的形式;多种bit位宽的乘法器资源复用,数据IO压缩;

嵌入式设备中的神经网络:从云端到终端的计算载体转移,对能效的要求提高。1-10TOPS/W的CNN计算能效是对始终在线的(Always-On)嵌入式设备运行NN的重要保证。不同计算压力下,计算量不同,因此能耗节省空间大[1]。

s

高精度调整乘法器电压+频率:DVAS->DVAFS。基于JSSC2016、VLSI2016的DVAS工作基础,对乘法器进行优化设计,增加实现频率的调整。DVAFS实现了对运行时所有可调整参数的降低:激活a,频率f,电压v。通过采用高位x高位、低位x低位,可以在16b阵列上同时计算两个8b乘法,对于后续的不同精度计算吞吐提升和资源利用提高起到极大的作用。

这里写图片描述

重点看一下本篇的架构设计:

在ENVISION中,数据重用分为三类:卷积重用(单一卷积核vs一张图的多图层);图像重用(多个卷积核vs一张图的单图层);卷积核重用(单一卷积核vs多张图像的多图层)。
这里写图片描述

总体架构如下:整个架构包含用于ReLU/MacPool/Mac计算的1D-SIMD,专用于MAC计算的2D-SIMD,用于数据和控制的RISC主控、DMA接口、DM、PM模块等。

这里写图片描述

下面几张图分别介绍了卷积重用(单一卷积核vs一张图的多图层);图像重用(多个卷积核vs一张图的单图层);卷积核重用(单一卷积核vs多张图像的多图层)的方法:

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

上面这些都是很基本的计算trick,但是在一款设计中要全部做到,很多以前的设计并没有做好。原因很多,比如在做多张的时候,如果复用一张的资源就需要2X的资源,但是本文结合了4-8-16复用一套计算单元的方法——就是在低bit的时候,还是一套资源。

这里写图片描述

这里写图片描述

这里写图片描述

几个其他特点:

  1. C编程
  2. 16bit指令
  3. IO的时候有huffman压缩
  4. GRD SRAM——用于使能sparse计算,关闭sparse的乘法;

这里写图片描述

关闭sparse的乘法:

这里写图片描述

芯片性能及能效表现:由上到下分为1x16b/2x8b/4x4b/30~60% 4×3~4b。可以看到scale非常大,能效相差可达40x,电压域为0.61v~0.85v。性能表现在BBopt下可达10TOPS/W。

这里写图片描述

总结[1]:

1、面向多层场景的Always-on架构

2、高能效的CNN处理架构:基于2D-SIMD;采用DVAFS技术;面向稀疏计算的检测及IO级压缩

3、ENVISION是一款具有0.25~10TOPS/W@76GOPS能效表现的嵌入式CNN处理芯片。

参考资料

[1] https://reconfigdeeplearning.com/2017/02/09/isscc-2017-session-14-slides14-5/
[2] ENVISION: A 0.26-to-10 TOPS/W Subword-Parallel Dynamic-Voltage-Accuracy-Frequency-Scalable CNN Processor in 28nm FDSOI

posted @ 2017-02-18 21:48  DownUp  阅读(354)  评论(0编辑  收藏  举报