Hdu1588Gauss Fibonacci矩阵
题意:求 g(i)=k*i+b; f(g(i)) for 0<=i<n。
设 矩阵 A , S = A^0 + A^1 + A^2 + ... + A^n 。
将这个序列分成两半 ,A^0 + A^1 + A^2 + ... + A^(n/2) + A^(n/2 + 1) *(A^0 + ... + A^(n/2)) + A^n or A^0 + A^1 + A^2 + ... + A^(n/2) + A^(n/2 + 1) *(A^0 + ... + A^(n/2))
#include <cstdio> #include <algorithm> #include <iostream> #include <string.h> typedef long long LL; LL M; using namespace std; struct Matrix { LL m[4][4]; }; Matrix Mul(Matrix a, Matrix b) { Matrix ans; for (LL i = 0; i < 2; i++) for (LL j = 0; j < 2; j++){ ans.m[i][j] = 0; for (LL k = 0; k < 2; k++) ans.m[i][j] += a.m[i][k] * b.m[k][j]; ans.m[i][j] %= M; } return ans; } Matrix add(Matrix a, Matrix b) { for (LL i = 0; i < 2; i++) for (LL j = 0; j < 2; j++) a.m[i][j] += b.m[i][j], a.m[i][j] %= M; return a; } Matrix quick(Matrix a, LL b) { Matrix ans; for (LL i = 0; i < 2; i++) for (LL j = 0; j < 2; j++) ans.m[i][j] = (i == j); while (b){ if (b & 1) ans = Mul(ans, a); a = Mul(a, a); b >>= 1; } return ans; } Matrix solve(Matrix a, LL len) { if (len == 1){ Matrix ans; for (int i = 0; i<2; i++) for (int j = 0; j<2; j++) ans.m[i][j] = (i == j); return ans; } Matrix ans = solve(a, len >> 1); Matrix t = quick(a, (len >> 1)); t = Mul(t, ans); ans = add(ans, t); if (len & 1) return add(ans, quick(a, len - 1)); return ans; } void gao(LL n, LL k, LL b) { Matrix ans; ans.m[0][0] = 1; ans.m[0][1] = 1; ans.m[1][0] = 1; ans.m[1][1] = 0; Matrix t = quick(ans, k); Matrix gg = solve(t, n); gg = Mul(gg, quick(ans, b)); cout << gg.m[0][1] % M << endl; } int main() { LL n, k, b; while (cin >> k >> b >> n >> M){ gao(n, k, b); } return 0; }