【DP】【P2224】】【HNOI2001】产品加工

传送门\

Description

某加工厂有\(A\)\(B\)两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成。由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工,所完成任务又会不同。某一天,加工厂接到n个产品加工的任务,每个任务的工作量不尽一样。

你的任务就是:已知每个任务在\(A\)机器上加工所需的时间\(t_1\),\(B\)机器上加工所需的时间\(t_2\)及由两台机器共同加工所需的时间\(t_3\),请你合理安排任务的调度顺序,使完成所有\(n\)个任务的总时间最少。

Input

\(1\)行为\(n\)\(n\)是任务总数
\(i+1\)行为\(3\)\([0,5]\)之间的非负整数\(t_1,t_2,t_3\),分别表示第\(i\)个任务在\(A\)机器上加工、\(B\)机器上加工、两台机器共同加工所需要的时间。如果所给的时间\(t_1\)\(t_2\)\(0\)表示任务不能在该台机器上加工,如果\(t_3\)\(0\)表示任务不能同时由两台机器加工。

Output

最少完成时间

Sample Input

5                            
2 1 0
0 5 0
2 4 1
0 0 3
2 1 1

Sample Output

9

Hint

\(1~\leq~n~\leq~6000\)

Solution

看过去这确实是个DP,但是状态难以设计。因为共有两个时间,无法将他们体现到一个最优值上去。但是考虑最大的用时是3e4,所以其中一个用时是可以枚举的,所以可以把用时放到状态中:由此可以设计出状态:
\(f_{i,j}\)为前i个任务,\(A\)机器花费\(j\)时间的\(B\)最小花费时间。方程显然:
\(f_{i,j}=min\){\(f_{i-1,j-a},f_{i-1,j}+b,f_{i-1,j-c}+c\)}
这样卡一卡常就过了(

Code

#include<cstdio>
#define rg register
#define ci const int
#define cl const long long int

typedef long long int ll;

namespace IO {
    char buf[90];
}

template<typename T>
inline void qr(T &x) {
    char ch=getchar(),lst=' ';
    while(ch>'9'||ch<'0') lst=ch,ch=getchar();
    while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
    if(lst=='-') x=-x;
}

template<typename T>
inline void write(T x,const char aft,const bool pt) {
    if(x<0) x=-x,putchar('-');
    int top=0;
    do {
        IO::buf[++top]=x%10+'0';
        x/=10;
    } while(x);
    while(top) putchar(IO::buf[top--]);
    if(pt) putchar(aft);
}

template<typename T>
inline T mmax(const T a,const T b) {return a>b?a:b;}
template<typename T>
inline T mmin(const T a,const T b) {return a<b?a:b;}
template<typename T>
inline T mabs(const T a) {return a<0?-a:a;}

template<typename T>
inline void mswap(T &a,T &b) {
    T temp=a;a=b;b=temp;
}

const int maxn = 6010;
const int maxm = 30010;

int frog[maxm];

int main() {
	rg int n=0;qr(n);
	rg int a,b,c;
	for(rg int i=1;i<=n;++i) {
		a=b=c=0;qr(a);qr(b);qr(c);
		if(!a) a=maxm;if(!b) b=maxm;if(!c) c=maxm;
		for(rg int j=30000;~j;--j) {
			frog[j]+=b;
			if(j >= a) frog[j]=mmin(frog[j],frog[j-a]);
			if(j >= c) frog[j]=mmin(frog[j],frog[j-c]+c);
		}
	}
	rg int ans=0x3f3f3f3f;
	for(rg int i=0;i<30001;++i) {
		ans=mmin(ans,mmax(frog[i],i));
	}
	write(ans,'\n',true);
	return 0;
}

Summary

当一个状态的最优值包括\(n\)个参数时,可以将\(n-1\)个参数放到状态中,每次转移为其他参数为该状态时,剩下参数的最值。最后枚举参数求得答案。

posted @ 2018-09-26 17:10  一扶苏一  阅读(149)  评论(0编辑  收藏  举报