【单调队列】【P1714】 切蛋糕

传送门

Description

今天是小Z的生日,同学们为他带来了一块蛋糕。这块蛋糕是一个长方体,被用不同色彩分成了N个相同的小块,每小块都有对应的幸运值。

小Z作为寿星,自然希望吃到的第一块蛋糕的幸运值总和最大,但小Z最多又只能吃M小块(M≤N)的蛋糕。

吃东西自然就不想思考了,于是小Z把这个任务扔给了学OI的你,请你帮他从这N小块中找出连续的k块蛋糕(k≤M),使得其上的幸运值最大。

Input

输入文件cake.in的第一行是两个整数N,M。分别代表共有N小块蛋糕,小Z最多只能吃M小块。

第二行用空格隔开的N个整数,第i个整数Pi代表第i小块蛋糕的幸运值。

Output

输出文件cake.out只有一行,一个整数,为小Z能够得到的最大幸运值。

Sample Input_1

5 2
1 2 3 4 5

Sample Output_1

9

Sample Input_2

6 3
1 -2 3 -4 5 -6

Sample Output_2

5

Hint

N≤500000,|Pi|≤500。 答案保证在2^31-1之内。

Solution

  考虑暴力做法,可以O(n2)枚举左右端点,O(n)累加区间和

  发现O(n)的计算可以被前缀和优化掉。

  继续考虑,求长度不超过M的区间和最大的区间,则ans=max{s[i]-s[j-1]|i-(j-1)<=m}。

  发现s[i]是固定的,那么ans=s[i]-min{s[j-1]|i-(j-1)<=m}。

  至此,由于j的位置单调,所以可以进行单调队列优化。复杂度将至O(n)。可以通过本题。

Code

#include<cstdio>
#define maxn 500010

inline void qr(int &x) {
    char ch=getchar();bool f=false;
    while(ch>'9'||ch<'0') {
        if(ch=='-')    f=true;
        ch=getchar();
    }
    while(ch>='0'&&ch<='9')    x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
    if(f) x=-x;
}

inline int max(const int &a,const int &b) {if(a>b)return a;else return b;}
inline int min(const int &a,const int &b) {if(a<b)return a;else return b;}
inline int abs(const int &x) {if(x>=0) return x;else return -x;}

inline void swap(int &a,int &b) {
    int temp=a;a=b;b=temp;
}

int n,m,MU[maxn],sum[maxn];
int que[maxn],front,end=-1,ans=-192608170;

int main() {
    qr(n);qr(m);for(int i=1;i<=n;++i) {qr(MU[i]);sum[i]=sum[i-1]+MU[i];}
    for(int i=1;i<=n;++i) {
        while(front<=end&&i-que[front]>m) ++front;
        int &st=sum[i];
        while(front<=end&&sum[que[end]]>=st) --end;
        que[++end]=i;
        ans=max(ans,st-sum[que[front]]);
    }
    printf("%d\n",ans);
    return 0;
}
posted @ 2018-07-16 09:34  一扶苏一  阅读(171)  评论(0编辑  收藏  举报